SECrackSeg: A High-Accuracy Crack Segmentation Network Based on Proposed UNet with SAM2 S-Adapter and Edge-Aware Attention Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.3390/s25092642
Crack segmentation is essential for structural health monitoring and infrastructure maintenance, playing a crucial role in early damage detection and safety risk reduction. Traditional methods, including digital image processing techniques have limitations in complex environments. Deep learning-based methods have shown potential, but still face challenges, such as poor generalization with limited samples, insufficient extraction of fine-grained features, feature loss during upsampling, and inadequate capture of crack edge details. This study proposes SECrackSeg, a high-accuracy crack segmentation network that integrates an improved UNet architecture, Segment Anything Model 2 (SAM2), MI-Upsampling, and an Edge-Aware Attention mechanism. The key innovations include: (1) using a SAM2 S-Adapter with a frozen backbone to enhance generalization in low-data scenarios; (2) employing a Multi-Scale Dilated Convolution (MSDC) module to promote multi-scale feature fusion; (3) introducing MI-Upsampling to reduce feature loss during upsampling; and (4) implementing an Edge-Aware Attention mechanism to improve crack edge segmentation precision. Additionally, a custom loss function incorporating weighted binary cross-entropy and weighted IoU loss is utilized to emphasize challenging pixels. This function also applies Multi-Granularity Supervision by optimizing segmentation outputs at three different resolution levels, ensuring better feature consistency and improved model robustness across varying image scales. Experimental results show that SECrackSeg achieves higher precision, recall, F1-score, and mIoU scores on the CFD, Crack500, and DeepCrack datasets compared to state-of-the-art models, demonstrating its excellent performance in fine-grained feature recognition, edge segmentation, and robustness.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/s25092642
- https://www.mdpi.com/1424-8220/25/9/2642/pdf?version=1745330217
- OA Status
- gold
- Cited By
- 6
- References
- 34
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4409669268
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4409669268Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/s25092642Digital Object Identifier
- Title
-
SECrackSeg: A High-Accuracy Crack Segmentation Network Based on Proposed UNet with SAM2 S-Adapter and Edge-Aware AttentionWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-04-22Full publication date if available
- Authors
-
Xiyin Chen, Yonghua Shi, Jing-Xiao PangList of authors in order
- Landing page
-
https://doi.org/10.3390/s25092642Publisher landing page
- PDF URL
-
https://www.mdpi.com/1424-8220/25/9/2642/pdf?version=1745330217Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/1424-8220/25/9/2642/pdf?version=1745330217Direct OA link when available
- Concepts
-
Computer science, Upsampling, Segmentation, Artificial intelligence, Robustness (evolution), Feature extraction, Scalability, Computer vision, Pattern recognition (psychology), Database, Image (mathematics), Gene, Biochemistry, ChemistryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
6Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 6Per-year citation counts (last 5 years)
- References (count)
-
34Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4409669268 |
|---|---|
| doi | https://doi.org/10.3390/s25092642 |
| ids.doi | https://doi.org/10.3390/s25092642 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/40363082 |
| ids.openalex | https://openalex.org/W4409669268 |
| fwci | 14.37783857 |
| type | article |
| title | SECrackSeg: A High-Accuracy Crack Segmentation Network Based on Proposed UNet with SAM2 S-Adapter and Edge-Aware Attention |
| awards[0].id | https://openalex.org/G6272245214 |
| awards[0].funder_id | https://openalex.org/F4320335777 |
| awards[0].display_name | |
| awards[0].funder_award_id | 2023YFC2809803 |
| awards[0].funder_display_name | National Key Research and Development Program of China |
| biblio.issue | 9 |
| biblio.volume | 25 |
| biblio.last_page | 2642 |
| biblio.first_page | 2642 |
| topics[0].id | https://openalex.org/T11606 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2205 |
| topics[0].subfield.display_name | Civil and Structural Engineering |
| topics[0].display_name | Infrastructure Maintenance and Monitoring |
| topics[1].id | https://openalex.org/T11850 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9944999814033508 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2205 |
| topics[1].subfield.display_name | Civil and Structural Engineering |
| topics[1].display_name | Concrete Corrosion and Durability |
| topics[2].id | https://openalex.org/T10264 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9714999794960022 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2205 |
| topics[2].subfield.display_name | Civil and Structural Engineering |
| topics[2].display_name | Asphalt Pavement Performance Evaluation |
| funders[0].id | https://openalex.org/F4320335777 |
| funders[0].ror | |
| funders[0].display_name | National Key Research and Development Program of China |
| is_xpac | False |
| apc_list.value | 2400 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2598 |
| apc_paid.value | 2400 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2598 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7201013565063477 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C110384440 |
| concepts[1].level | 3 |
| concepts[1].score | 0.7126049399375916 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1143270 |
| concepts[1].display_name | Upsampling |
| concepts[2].id | https://openalex.org/C89600930 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6809710264205933 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[2].display_name | Segmentation |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.6394634246826172 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C63479239 |
| concepts[4].level | 3 |
| concepts[4].score | 0.5386350750923157 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q7353546 |
| concepts[4].display_name | Robustness (evolution) |
| concepts[5].id | https://openalex.org/C52622490 |
| concepts[5].level | 2 |
| concepts[5].score | 0.42333558201789856 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1026626 |
| concepts[5].display_name | Feature extraction |
| concepts[6].id | https://openalex.org/C48044578 |
| concepts[6].level | 2 |
| concepts[6].score | 0.41527003049850464 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q727490 |
| concepts[6].display_name | Scalability |
| concepts[7].id | https://openalex.org/C31972630 |
| concepts[7].level | 1 |
| concepts[7].score | 0.4103870093822479 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[7].display_name | Computer vision |
| concepts[8].id | https://openalex.org/C153180895 |
| concepts[8].level | 2 |
| concepts[8].score | 0.3693106770515442 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[8].display_name | Pattern recognition (psychology) |
| concepts[9].id | https://openalex.org/C77088390 |
| concepts[9].level | 1 |
| concepts[9].score | 0.18095290660858154 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q8513 |
| concepts[9].display_name | Database |
| concepts[10].id | https://openalex.org/C115961682 |
| concepts[10].level | 2 |
| concepts[10].score | 0.07956117391586304 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[10].display_name | Image (mathematics) |
| concepts[11].id | https://openalex.org/C104317684 |
| concepts[11].level | 2 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[11].display_name | Gene |
| concepts[12].id | https://openalex.org/C55493867 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q7094 |
| concepts[12].display_name | Biochemistry |
| concepts[13].id | https://openalex.org/C185592680 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[13].display_name | Chemistry |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7201013565063477 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/upsampling |
| keywords[1].score | 0.7126049399375916 |
| keywords[1].display_name | Upsampling |
| keywords[2].id | https://openalex.org/keywords/segmentation |
| keywords[2].score | 0.6809710264205933 |
| keywords[2].display_name | Segmentation |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.6394634246826172 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/robustness |
| keywords[4].score | 0.5386350750923157 |
| keywords[4].display_name | Robustness (evolution) |
| keywords[5].id | https://openalex.org/keywords/feature-extraction |
| keywords[5].score | 0.42333558201789856 |
| keywords[5].display_name | Feature extraction |
| keywords[6].id | https://openalex.org/keywords/scalability |
| keywords[6].score | 0.41527003049850464 |
| keywords[6].display_name | Scalability |
| keywords[7].id | https://openalex.org/keywords/computer-vision |
| keywords[7].score | 0.4103870093822479 |
| keywords[7].display_name | Computer vision |
| keywords[8].id | https://openalex.org/keywords/pattern-recognition |
| keywords[8].score | 0.3693106770515442 |
| keywords[8].display_name | Pattern recognition (psychology) |
| keywords[9].id | https://openalex.org/keywords/database |
| keywords[9].score | 0.18095290660858154 |
| keywords[9].display_name | Database |
| keywords[10].id | https://openalex.org/keywords/image |
| keywords[10].score | 0.07956117391586304 |
| keywords[10].display_name | Image (mathematics) |
| language | en |
| locations[0].id | doi:10.3390/s25092642 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S101949793 |
| locations[0].source.issn | 1424-8220 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1424-8220 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Sensors |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/1424-8220/25/9/2642/pdf?version=1745330217 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Sensors |
| locations[0].landing_page_url | https://doi.org/10.3390/s25092642 |
| locations[1].id | pmid:40363082 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Sensors (Basel, Switzerland) |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/40363082 |
| locations[2].id | pmh:oai:doaj.org/article:f4400e4b15fc49bb8d86215a202c65e8 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Sensors, Vol 25, Iss 9, p 2642 (2025) |
| locations[2].landing_page_url | https://doaj.org/article/f4400e4b15fc49bb8d86215a202c65e8 |
| locations[3].id | pmh:oai:pubmedcentral.nih.gov:12074472 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S2764455111 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | PubMed Central |
| locations[3].source.host_organization | https://openalex.org/I1299303238 |
| locations[3].source.host_organization_name | National Institutes of Health |
| locations[3].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Sensors (Basel) |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/12074472 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5111006049 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-2219-2811 |
| authorships[0].author.display_name | Xiyin Chen |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I90610280 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China |
| authorships[0].institutions[0].id | https://openalex.org/I90610280 |
| authorships[0].institutions[0].ror | https://ror.org/0530pts50 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I90610280 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | South China University of Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Xiyin Chen |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China |
| authorships[1].author.id | https://openalex.org/A5005232346 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-5653-6742 |
| authorships[1].author.display_name | Yonghua Shi |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I90610280 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China |
| authorships[1].institutions[0].id | https://openalex.org/I90610280 |
| authorships[1].institutions[0].ror | https://ror.org/0530pts50 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I90610280 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | South China University of Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Yonghua Shi |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China |
| authorships[2].author.id | https://openalex.org/A5113860193 |
| authorships[2].author.orcid | https://orcid.org/0009-0002-2597-2394 |
| authorships[2].author.display_name | Jing-Xiao Pang |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I90610280 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China |
| authorships[2].institutions[0].id | https://openalex.org/I90610280 |
| authorships[2].institutions[0].ror | https://ror.org/0530pts50 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I90610280 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | South China University of Technology |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Junjie Pang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/1424-8220/25/9/2642/pdf?version=1745330217 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | SECrackSeg: A High-Accuracy Crack Segmentation Network Based on Proposed UNet with SAM2 S-Adapter and Edge-Aware Attention |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T23:17:08.748858 |
| primary_topic.id | https://openalex.org/T11606 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2205 |
| primary_topic.subfield.display_name | Civil and Structural Engineering |
| primary_topic.display_name | Infrastructure Maintenance and Monitoring |
| related_works | https://openalex.org/W2062399876, https://openalex.org/W2607795551, https://openalex.org/W3155117723, https://openalex.org/W1991429770, https://openalex.org/W1983892167, https://openalex.org/W4310746709, https://openalex.org/W4386075645, https://openalex.org/W4385574037, https://openalex.org/W1996690921, https://openalex.org/W4212888438 |
| cited_by_count | 6 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 6 |
| locations_count | 4 |
| best_oa_location.id | doi:10.3390/s25092642 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S101949793 |
| best_oa_location.source.issn | 1424-8220 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1424-8220 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Sensors |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/1424-8220/25/9/2642/pdf?version=1745330217 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Sensors |
| best_oa_location.landing_page_url | https://doi.org/10.3390/s25092642 |
| primary_location.id | doi:10.3390/s25092642 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S101949793 |
| primary_location.source.issn | 1424-8220 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1424-8220 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Sensors |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/1424-8220/25/9/2642/pdf?version=1745330217 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Sensors |
| primary_location.landing_page_url | https://doi.org/10.3390/s25092642 |
| publication_date | 2025-04-22 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W1957764428, https://openalex.org/W6641093267, https://openalex.org/W2588612844, https://openalex.org/W2145023731, https://openalex.org/W1995130521, https://openalex.org/W4378194625, https://openalex.org/W4392611940, https://openalex.org/W1903029394, https://openalex.org/W1901129140, https://openalex.org/W2884436604, https://openalex.org/W2964309882, https://openalex.org/W4406069917, https://openalex.org/W4407099556, https://openalex.org/W3138516171, https://openalex.org/W3109301572, https://openalex.org/W4386598383, https://openalex.org/W4390874575, https://openalex.org/W4390873795, https://openalex.org/W4402733565, https://openalex.org/W4379261327, https://openalex.org/W4390190100, https://openalex.org/W2412782625, https://openalex.org/W4321232185, https://openalex.org/W4400881081, https://openalex.org/W4407838128, https://openalex.org/W4251351999, https://openalex.org/W2884585870, https://openalex.org/W6770002327, https://openalex.org/W3092344722, https://openalex.org/W2407692387, https://openalex.org/W2964308596, https://openalex.org/W2912350898, https://openalex.org/W4406116543, https://openalex.org/W2998449272 |
| referenced_works_count | 34 |
| abstract_inverted_index.2 | 86 |
| abstract_inverted_index.a | 12, 72, 100, 104, 115, 149 |
| abstract_inverted_index.an | 79, 90, 138 |
| abstract_inverted_index.as | 46 |
| abstract_inverted_index.at | 177 |
| abstract_inverted_index.by | 173 |
| abstract_inverted_index.in | 15, 32, 110, 222 |
| abstract_inverted_index.is | 2, 161 |
| abstract_inverted_index.of | 54, 64 |
| abstract_inverted_index.on | 207 |
| abstract_inverted_index.to | 107, 121, 129, 142, 163, 215 |
| abstract_inverted_index.(1) | 98 |
| abstract_inverted_index.(2) | 113 |
| abstract_inverted_index.(3) | 126 |
| abstract_inverted_index.(4) | 136 |
| abstract_inverted_index.IoU | 159 |
| abstract_inverted_index.The | 94 |
| abstract_inverted_index.and | 8, 19, 61, 89, 135, 157, 186, 204, 211, 228 |
| abstract_inverted_index.but | 41 |
| abstract_inverted_index.for | 4 |
| abstract_inverted_index.its | 219 |
| abstract_inverted_index.key | 95 |
| abstract_inverted_index.the | 208 |
| abstract_inverted_index.CFD, | 209 |
| abstract_inverted_index.Deep | 35 |
| abstract_inverted_index.SAM2 | 101 |
| abstract_inverted_index.This | 68, 167 |
| abstract_inverted_index.UNet | 81 |
| abstract_inverted_index.also | 169 |
| abstract_inverted_index.edge | 66, 145, 226 |
| abstract_inverted_index.face | 43 |
| abstract_inverted_index.have | 30, 38 |
| abstract_inverted_index.loss | 58, 132, 151, 160 |
| abstract_inverted_index.mIoU | 205 |
| abstract_inverted_index.poor | 47 |
| abstract_inverted_index.risk | 21 |
| abstract_inverted_index.role | 14 |
| abstract_inverted_index.show | 196 |
| abstract_inverted_index.such | 45 |
| abstract_inverted_index.that | 77, 197 |
| abstract_inverted_index.with | 49, 103 |
| abstract_inverted_index.Crack | 0 |
| abstract_inverted_index.Model | 85 |
| abstract_inverted_index.crack | 65, 74, 144 |
| abstract_inverted_index.early | 16 |
| abstract_inverted_index.image | 27, 192 |
| abstract_inverted_index.model | 188 |
| abstract_inverted_index.shown | 39 |
| abstract_inverted_index.still | 42 |
| abstract_inverted_index.study | 69 |
| abstract_inverted_index.three | 178 |
| abstract_inverted_index.using | 99 |
| abstract_inverted_index.(MSDC) | 119 |
| abstract_inverted_index.across | 190 |
| abstract_inverted_index.better | 183 |
| abstract_inverted_index.binary | 155 |
| abstract_inverted_index.custom | 150 |
| abstract_inverted_index.damage | 17 |
| abstract_inverted_index.during | 59, 133 |
| abstract_inverted_index.frozen | 105 |
| abstract_inverted_index.health | 6 |
| abstract_inverted_index.higher | 200 |
| abstract_inverted_index.module | 120 |
| abstract_inverted_index.reduce | 130 |
| abstract_inverted_index.safety | 20 |
| abstract_inverted_index.scores | 206 |
| abstract_inverted_index.(SAM2), | 87 |
| abstract_inverted_index.Dilated | 117 |
| abstract_inverted_index.Segment | 83 |
| abstract_inverted_index.applies | 170 |
| abstract_inverted_index.capture | 63 |
| abstract_inverted_index.complex | 33 |
| abstract_inverted_index.crucial | 13 |
| abstract_inverted_index.digital | 26 |
| abstract_inverted_index.enhance | 108 |
| abstract_inverted_index.feature | 57, 124, 131, 184, 224 |
| abstract_inverted_index.fusion; | 125 |
| abstract_inverted_index.improve | 143 |
| abstract_inverted_index.levels, | 181 |
| abstract_inverted_index.limited | 50 |
| abstract_inverted_index.methods | 37 |
| abstract_inverted_index.models, | 217 |
| abstract_inverted_index.network | 76 |
| abstract_inverted_index.outputs | 176 |
| abstract_inverted_index.pixels. | 166 |
| abstract_inverted_index.playing | 11 |
| abstract_inverted_index.promote | 122 |
| abstract_inverted_index.recall, | 202 |
| abstract_inverted_index.results | 195 |
| abstract_inverted_index.scales. | 193 |
| abstract_inverted_index.varying | 191 |
| abstract_inverted_index.Anything | 84 |
| abstract_inverted_index.achieves | 199 |
| abstract_inverted_index.backbone | 106 |
| abstract_inverted_index.compared | 214 |
| abstract_inverted_index.datasets | 213 |
| abstract_inverted_index.details. | 67 |
| abstract_inverted_index.ensuring | 182 |
| abstract_inverted_index.function | 152, 168 |
| abstract_inverted_index.improved | 80, 187 |
| abstract_inverted_index.include: | 97 |
| abstract_inverted_index.low-data | 111 |
| abstract_inverted_index.methods, | 24 |
| abstract_inverted_index.proposes | 70 |
| abstract_inverted_index.samples, | 51 |
| abstract_inverted_index.utilized | 162 |
| abstract_inverted_index.weighted | 154, 158 |
| abstract_inverted_index.Attention | 92, 140 |
| abstract_inverted_index.Crack500, | 210 |
| abstract_inverted_index.DeepCrack | 212 |
| abstract_inverted_index.F1-score, | 203 |
| abstract_inverted_index.S-Adapter | 102 |
| abstract_inverted_index.detection | 18 |
| abstract_inverted_index.different | 179 |
| abstract_inverted_index.emphasize | 164 |
| abstract_inverted_index.employing | 114 |
| abstract_inverted_index.essential | 3 |
| abstract_inverted_index.excellent | 220 |
| abstract_inverted_index.features, | 56 |
| abstract_inverted_index.including | 25 |
| abstract_inverted_index.mechanism | 141 |
| abstract_inverted_index.Edge-Aware | 91, 139 |
| abstract_inverted_index.SECrackSeg | 198 |
| abstract_inverted_index.extraction | 53 |
| abstract_inverted_index.inadequate | 62 |
| abstract_inverted_index.integrates | 78 |
| abstract_inverted_index.mechanism. | 93 |
| abstract_inverted_index.monitoring | 7 |
| abstract_inverted_index.optimizing | 174 |
| abstract_inverted_index.potential, | 40 |
| abstract_inverted_index.precision, | 201 |
| abstract_inverted_index.precision. | 147 |
| abstract_inverted_index.processing | 28 |
| abstract_inverted_index.reduction. | 22 |
| abstract_inverted_index.resolution | 180 |
| abstract_inverted_index.robustness | 189 |
| abstract_inverted_index.scenarios; | 112 |
| abstract_inverted_index.structural | 5 |
| abstract_inverted_index.techniques | 29 |
| abstract_inverted_index.Convolution | 118 |
| abstract_inverted_index.Multi-Scale | 116 |
| abstract_inverted_index.SECrackSeg, | 71 |
| abstract_inverted_index.Supervision | 172 |
| abstract_inverted_index.Traditional | 23 |
| abstract_inverted_index.challenges, | 44 |
| abstract_inverted_index.challenging | 165 |
| abstract_inverted_index.consistency | 185 |
| abstract_inverted_index.innovations | 96 |
| abstract_inverted_index.introducing | 127 |
| abstract_inverted_index.limitations | 31 |
| abstract_inverted_index.multi-scale | 123 |
| abstract_inverted_index.performance | 221 |
| abstract_inverted_index.robustness. | 229 |
| abstract_inverted_index.upsampling, | 60 |
| abstract_inverted_index.upsampling; | 134 |
| abstract_inverted_index.Experimental | 194 |
| abstract_inverted_index.fine-grained | 55, 223 |
| abstract_inverted_index.implementing | 137 |
| abstract_inverted_index.insufficient | 52 |
| abstract_inverted_index.maintenance, | 10 |
| abstract_inverted_index.recognition, | 225 |
| abstract_inverted_index.segmentation | 1, 75, 146, 175 |
| abstract_inverted_index.Additionally, | 148 |
| abstract_inverted_index.MI-Upsampling | 128 |
| abstract_inverted_index.architecture, | 82 |
| abstract_inverted_index.cross-entropy | 156 |
| abstract_inverted_index.demonstrating | 218 |
| abstract_inverted_index.environments. | 34 |
| abstract_inverted_index.high-accuracy | 73 |
| abstract_inverted_index.incorporating | 153 |
| abstract_inverted_index.segmentation, | 227 |
| abstract_inverted_index.MI-Upsampling, | 88 |
| abstract_inverted_index.generalization | 48, 109 |
| abstract_inverted_index.infrastructure | 9 |
| abstract_inverted_index.learning-based | 36 |
| abstract_inverted_index.state-of-the-art | 216 |
| abstract_inverted_index.Multi-Granularity | 171 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 98 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/9 |
| sustainable_development_goals[0].score | 0.6200000047683716 |
| sustainable_development_goals[0].display_name | Industry, innovation and infrastructure |
| citation_normalized_percentile.value | 0.97683606 |
| citation_normalized_percentile.is_in_top_1_percent | True |
| citation_normalized_percentile.is_in_top_10_percent | True |