Secure & Private Federated Neuroimaging Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2205.05249
The amount of biomedical data continues to grow rapidly. However, collecting data from multiple sites for joint analysis remains challenging due to security, privacy, and regulatory concerns. To overcome this challenge, we use Federated Learning, which enables distributed training of neural network models over multiple data sources without sharing data. Each site trains the neural network over its private data for some time, then shares the neural network parameters (i.e., weights, gradients) with a Federation Controller, which in turn aggregates the local models, sends the resulting community model back to each site, and the process repeats. Our Federated Learning architecture, MetisFL, provides strong security and privacy. First, sample data never leaves a site. Second, neural network parameters are encrypted before transmission and the global neural model is computed under fully-homomorphic encryption. Finally, we use information-theoretic methods to limit information leakage from the neural model to prevent a curious site from performing model inversion or membership attacks. We present a thorough evaluation of the performance of secure, private federated learning in neuroimaging tasks, including for predicting Alzheimer's disease and estimating BrainAGE from magnetic resonance imaging (MRI) studies, in challenging, heterogeneous federated environments where sites have different amounts of data and statistical distributions.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2205.05249
- https://arxiv.org/pdf/2205.05249
- OA Status
- green
- Cited By
- 3
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4280540325
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4280540325Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2205.05249Digital Object Identifier
- Title
-
Secure & Private Federated NeuroimagingWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-05-11Full publication date if available
- Authors
-
Dimitris Stripelis, Umang Gupta, Hamza Saleem, Nikhil J. Dhinagar, Tanmay Ghai, Rafael Sánchez, Chrysovalantis Anastasiou, Armaghan Asghar, Greg Ver Steeg, Srivatsan Ravi, Muhammad Naveed, Paul M. Thompson, José Luis AmbiteList of authors in order
- Landing page
-
https://arxiv.org/abs/2205.05249Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2205.05249Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2205.05249Direct OA link when available
- Concepts
-
Computer science, Homomorphic encryption, Artificial neural network, Encryption, Neuroimaging, Private information retrieval, Information sensitivity, Computer security, Data mining, Artificial intelligence, Machine learning, Computer network, Psychology, PsychiatryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
3Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 2, 2023: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4280540325 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2205.05249 |
| ids.doi | https://doi.org/10.48550/arxiv.2205.05249 |
| ids.openalex | https://openalex.org/W4280540325 |
| fwci | |
| type | preprint |
| title | Secure & Private Federated Neuroimaging |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10764 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9980999827384949 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Privacy-Preserving Technologies in Data |
| topics[1].id | https://openalex.org/T12702 |
| topics[1].field.id | https://openalex.org/fields/28 |
| topics[1].field.display_name | Neuroscience |
| topics[1].score | 0.9689000248908997 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2808 |
| topics[1].subfield.display_name | Neurology |
| topics[1].display_name | Brain Tumor Detection and Classification |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7538967132568359 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C158338273 |
| concepts[1].level | 3 |
| concepts[1].score | 0.623388946056366 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2154943 |
| concepts[1].display_name | Homomorphic encryption |
| concepts[2].id | https://openalex.org/C50644808 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6163651943206787 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[2].display_name | Artificial neural network |
| concepts[3].id | https://openalex.org/C148730421 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5590681433677673 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q141090 |
| concepts[3].display_name | Encryption |
| concepts[4].id | https://openalex.org/C58693492 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5437892079353333 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q551875 |
| concepts[4].display_name | Neuroimaging |
| concepts[5].id | https://openalex.org/C99221444 |
| concepts[5].level | 2 |
| concepts[5].score | 0.48467710614204407 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1532069 |
| concepts[5].display_name | Private information retrieval |
| concepts[6].id | https://openalex.org/C137822555 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4771116077899933 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2587068 |
| concepts[6].display_name | Information sensitivity |
| concepts[7].id | https://openalex.org/C38652104 |
| concepts[7].level | 1 |
| concepts[7].score | 0.4168045222759247 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q3510521 |
| concepts[7].display_name | Computer security |
| concepts[8].id | https://openalex.org/C124101348 |
| concepts[8].level | 1 |
| concepts[8].score | 0.41667842864990234 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[8].display_name | Data mining |
| concepts[9].id | https://openalex.org/C154945302 |
| concepts[9].level | 1 |
| concepts[9].score | 0.40804409980773926 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[9].display_name | Artificial intelligence |
| concepts[10].id | https://openalex.org/C119857082 |
| concepts[10].level | 1 |
| concepts[10].score | 0.3929256498813629 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[10].display_name | Machine learning |
| concepts[11].id | https://openalex.org/C31258907 |
| concepts[11].level | 1 |
| concepts[11].score | 0.3448464870452881 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q1301371 |
| concepts[11].display_name | Computer network |
| concepts[12].id | https://openalex.org/C15744967 |
| concepts[12].level | 0 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[12].display_name | Psychology |
| concepts[13].id | https://openalex.org/C118552586 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q7867 |
| concepts[13].display_name | Psychiatry |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7538967132568359 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/homomorphic-encryption |
| keywords[1].score | 0.623388946056366 |
| keywords[1].display_name | Homomorphic encryption |
| keywords[2].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[2].score | 0.6163651943206787 |
| keywords[2].display_name | Artificial neural network |
| keywords[3].id | https://openalex.org/keywords/encryption |
| keywords[3].score | 0.5590681433677673 |
| keywords[3].display_name | Encryption |
| keywords[4].id | https://openalex.org/keywords/neuroimaging |
| keywords[4].score | 0.5437892079353333 |
| keywords[4].display_name | Neuroimaging |
| keywords[5].id | https://openalex.org/keywords/private-information-retrieval |
| keywords[5].score | 0.48467710614204407 |
| keywords[5].display_name | Private information retrieval |
| keywords[6].id | https://openalex.org/keywords/information-sensitivity |
| keywords[6].score | 0.4771116077899933 |
| keywords[6].display_name | Information sensitivity |
| keywords[7].id | https://openalex.org/keywords/computer-security |
| keywords[7].score | 0.4168045222759247 |
| keywords[7].display_name | Computer security |
| keywords[8].id | https://openalex.org/keywords/data-mining |
| keywords[8].score | 0.41667842864990234 |
| keywords[8].display_name | Data mining |
| keywords[9].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[9].score | 0.40804409980773926 |
| keywords[9].display_name | Artificial intelligence |
| keywords[10].id | https://openalex.org/keywords/machine-learning |
| keywords[10].score | 0.3929256498813629 |
| keywords[10].display_name | Machine learning |
| keywords[11].id | https://openalex.org/keywords/computer-network |
| keywords[11].score | 0.3448464870452881 |
| keywords[11].display_name | Computer network |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2205.05249 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2205.05249 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2205.05249 |
| locations[1].id | doi:10.48550/arxiv.2205.05249 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2205.05249 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5015466855 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-3343-8335 |
| authorships[0].author.display_name | Dimitris Stripelis |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Stripelis, Dimitris |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5081316458 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-1263-8813 |
| authorships[1].author.display_name | Umang Gupta |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Gupta, Umang |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5041862790 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-5189-6861 |
| authorships[2].author.display_name | Hamza Saleem |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Saleem, Hamza |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5089189717 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-2424-4854 |
| authorships[3].author.display_name | Nikhil J. Dhinagar |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Dhinagar, Nikhil |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5041519901 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Tanmay Ghai |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Ghai, Tanmay |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5101652968 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-4575-889X |
| authorships[5].author.display_name | Rafael Sánchez |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Sanchez, Rafael |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5082460181 |
| authorships[6].author.orcid | https://orcid.org/0000-0003-4966-5129 |
| authorships[6].author.display_name | Chrysovalantis Anastasiou |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Anastasiou, Chrysovalantis |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5088184080 |
| authorships[7].author.orcid | |
| authorships[7].author.display_name | Armaghan Asghar |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Asghar, Armaghan |
| authorships[7].is_corresponding | False |
| authorships[8].author.id | https://openalex.org/A5075920466 |
| authorships[8].author.orcid | https://orcid.org/0000-0002-0793-141X |
| authorships[8].author.display_name | Greg Ver Steeg |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Steeg, Greg Ver |
| authorships[8].is_corresponding | False |
| authorships[9].author.id | https://openalex.org/A5090605375 |
| authorships[9].author.orcid | https://orcid.org/0000-0002-2965-3940 |
| authorships[9].author.display_name | Srivatsan Ravi |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | Ravi, Srivatsan |
| authorships[9].is_corresponding | False |
| authorships[10].author.id | https://openalex.org/A5115597910 |
| authorships[10].author.orcid | https://orcid.org/0000-0002-6935-8479 |
| authorships[10].author.display_name | Muhammad Naveed |
| authorships[10].author_position | middle |
| authorships[10].raw_author_name | Naveed, Muhammad |
| authorships[10].is_corresponding | False |
| authorships[11].author.id | https://openalex.org/A5100606557 |
| authorships[11].author.orcid | https://orcid.org/0000-0002-4720-8867 |
| authorships[11].author.display_name | Paul M. Thompson |
| authorships[11].author_position | middle |
| authorships[11].raw_author_name | Thompson, Paul M. |
| authorships[11].is_corresponding | False |
| authorships[12].author.id | https://openalex.org/A5033175043 |
| authorships[12].author.orcid | https://orcid.org/0000-0003-0087-080X |
| authorships[12].author.display_name | José Luis Ambite |
| authorships[12].author_position | last |
| authorships[12].raw_author_name | Ambite, Jose Luis |
| authorships[12].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2205.05249 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Secure & Private Federated Neuroimaging |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10764 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9980999827384949 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Privacy-Preserving Technologies in Data |
| related_works | https://openalex.org/W2539930818, https://openalex.org/W4393118461, https://openalex.org/W2773194476, https://openalex.org/W2290523965, https://openalex.org/W118448456, https://openalex.org/W2596305496, https://openalex.org/W2172222246, https://openalex.org/W2260680879, https://openalex.org/W2050283318, https://openalex.org/W2290534421 |
| cited_by_count | 3 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2205.05249 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2205.05249 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2205.05249 |
| primary_location.id | pmh:oai:arXiv.org:2205.05249 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2205.05249 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2205.05249 |
| publication_date | 2022-05-11 |
| publication_year | 2022 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 73, 111, 146, 158 |
| abstract_inverted_index.To | 27 |
| abstract_inverted_index.We | 156 |
| abstract_inverted_index.in | 77, 169, 186 |
| abstract_inverted_index.is | 126 |
| abstract_inverted_index.of | 2, 39, 161, 164, 196 |
| abstract_inverted_index.or | 153 |
| abstract_inverted_index.to | 6, 21, 89, 136, 144 |
| abstract_inverted_index.we | 31, 132 |
| abstract_inverted_index.Our | 96 |
| abstract_inverted_index.The | 0 |
| abstract_inverted_index.and | 24, 92, 104, 121, 177, 198 |
| abstract_inverted_index.are | 117 |
| abstract_inverted_index.due | 20 |
| abstract_inverted_index.for | 15, 60, 173 |
| abstract_inverted_index.its | 57 |
| abstract_inverted_index.the | 53, 65, 80, 84, 93, 122, 141, 162 |
| abstract_inverted_index.use | 32, 133 |
| abstract_inverted_index.Each | 50 |
| abstract_inverted_index.back | 88 |
| abstract_inverted_index.data | 4, 11, 45, 59, 108, 197 |
| abstract_inverted_index.each | 90 |
| abstract_inverted_index.from | 12, 140, 149, 180 |
| abstract_inverted_index.grow | 7 |
| abstract_inverted_index.have | 193 |
| abstract_inverted_index.over | 43, 56 |
| abstract_inverted_index.site | 51, 148 |
| abstract_inverted_index.some | 61 |
| abstract_inverted_index.then | 63 |
| abstract_inverted_index.this | 29 |
| abstract_inverted_index.turn | 78 |
| abstract_inverted_index.with | 72 |
| abstract_inverted_index.(MRI) | 184 |
| abstract_inverted_index.data. | 49 |
| abstract_inverted_index.joint | 16 |
| abstract_inverted_index.limit | 137 |
| abstract_inverted_index.local | 81 |
| abstract_inverted_index.model | 87, 125, 143, 151 |
| abstract_inverted_index.never | 109 |
| abstract_inverted_index.sends | 83 |
| abstract_inverted_index.site, | 91 |
| abstract_inverted_index.site. | 112 |
| abstract_inverted_index.sites | 14, 192 |
| abstract_inverted_index.time, | 62 |
| abstract_inverted_index.under | 128 |
| abstract_inverted_index.where | 191 |
| abstract_inverted_index.which | 35, 76 |
| abstract_inverted_index.(i.e., | 69 |
| abstract_inverted_index.First, | 106 |
| abstract_inverted_index.amount | 1 |
| abstract_inverted_index.before | 119 |
| abstract_inverted_index.global | 123 |
| abstract_inverted_index.leaves | 110 |
| abstract_inverted_index.models | 42 |
| abstract_inverted_index.neural | 40, 54, 66, 114, 124, 142 |
| abstract_inverted_index.sample | 107 |
| abstract_inverted_index.shares | 64 |
| abstract_inverted_index.strong | 102 |
| abstract_inverted_index.tasks, | 171 |
| abstract_inverted_index.trains | 52 |
| abstract_inverted_index.Second, | 113 |
| abstract_inverted_index.amounts | 195 |
| abstract_inverted_index.curious | 147 |
| abstract_inverted_index.disease | 176 |
| abstract_inverted_index.enables | 36 |
| abstract_inverted_index.imaging | 183 |
| abstract_inverted_index.leakage | 139 |
| abstract_inverted_index.methods | 135 |
| abstract_inverted_index.models, | 82 |
| abstract_inverted_index.network | 41, 55, 67, 115 |
| abstract_inverted_index.present | 157 |
| abstract_inverted_index.prevent | 145 |
| abstract_inverted_index.private | 58, 166 |
| abstract_inverted_index.process | 94 |
| abstract_inverted_index.remains | 18 |
| abstract_inverted_index.secure, | 165 |
| abstract_inverted_index.sharing | 48 |
| abstract_inverted_index.sources | 46 |
| abstract_inverted_index.without | 47 |
| abstract_inverted_index.BrainAGE | 179 |
| abstract_inverted_index.Finally, | 131 |
| abstract_inverted_index.However, | 9 |
| abstract_inverted_index.Learning | 98 |
| abstract_inverted_index.MetisFL, | 100 |
| abstract_inverted_index.analysis | 17 |
| abstract_inverted_index.attacks. | 155 |
| abstract_inverted_index.computed | 127 |
| abstract_inverted_index.learning | 168 |
| abstract_inverted_index.magnetic | 181 |
| abstract_inverted_index.multiple | 13, 44 |
| abstract_inverted_index.overcome | 28 |
| abstract_inverted_index.privacy, | 23 |
| abstract_inverted_index.privacy. | 105 |
| abstract_inverted_index.provides | 101 |
| abstract_inverted_index.rapidly. | 8 |
| abstract_inverted_index.repeats. | 95 |
| abstract_inverted_index.security | 103 |
| abstract_inverted_index.studies, | 185 |
| abstract_inverted_index.thorough | 159 |
| abstract_inverted_index.training | 38 |
| abstract_inverted_index.weights, | 70 |
| abstract_inverted_index.Federated | 33, 97 |
| abstract_inverted_index.Learning, | 34 |
| abstract_inverted_index.community | 86 |
| abstract_inverted_index.concerns. | 26 |
| abstract_inverted_index.continues | 5 |
| abstract_inverted_index.different | 194 |
| abstract_inverted_index.encrypted | 118 |
| abstract_inverted_index.federated | 167, 189 |
| abstract_inverted_index.including | 172 |
| abstract_inverted_index.inversion | 152 |
| abstract_inverted_index.resonance | 182 |
| abstract_inverted_index.resulting | 85 |
| abstract_inverted_index.security, | 22 |
| abstract_inverted_index.Federation | 74 |
| abstract_inverted_index.aggregates | 79 |
| abstract_inverted_index.biomedical | 3 |
| abstract_inverted_index.challenge, | 30 |
| abstract_inverted_index.collecting | 10 |
| abstract_inverted_index.estimating | 178 |
| abstract_inverted_index.evaluation | 160 |
| abstract_inverted_index.gradients) | 71 |
| abstract_inverted_index.membership | 154 |
| abstract_inverted_index.parameters | 68, 116 |
| abstract_inverted_index.performing | 150 |
| abstract_inverted_index.predicting | 174 |
| abstract_inverted_index.regulatory | 25 |
| abstract_inverted_index.Alzheimer's | 175 |
| abstract_inverted_index.Controller, | 75 |
| abstract_inverted_index.challenging | 19 |
| abstract_inverted_index.distributed | 37 |
| abstract_inverted_index.encryption. | 130 |
| abstract_inverted_index.information | 138 |
| abstract_inverted_index.performance | 163 |
| abstract_inverted_index.statistical | 199 |
| abstract_inverted_index.challenging, | 187 |
| abstract_inverted_index.environments | 190 |
| abstract_inverted_index.neuroimaging | 170 |
| abstract_inverted_index.transmission | 120 |
| abstract_inverted_index.architecture, | 99 |
| abstract_inverted_index.heterogeneous | 188 |
| abstract_inverted_index.distributions. | 200 |
| abstract_inverted_index.fully-homomorphic | 129 |
| abstract_inverted_index.information-theoretic | 134 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 13 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/17 |
| sustainable_development_goals[0].score | 0.5600000023841858 |
| sustainable_development_goals[0].display_name | Partnerships for the goals |
| citation_normalized_percentile |