Securing Pseudo-Model Parallelism-Based Collaborative DNN Inference for Edge Devices Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1109/access.2024.3477293
Collaborative Deep Neural Network Inference (CDNN) has emerged as one of the significant strategies for efficient and lightweight computation on resource-constrained devices (like drones), especially in the case of adverse events like natural disasters. Several strategies have been proposed in the implementation of collaborative inference. Notably, parllale CDNN (P-CDNN) emerges as a crucial strategy. In the context of P-CDNN, the CDNN effectively partitions and distributes input data across multiple drone devices, each equipped with pre-trained Deep Neural Network (DNN) models. However, this collaborative framework is vulnerable to several security concerns, especially when one or more devices are compromised. To address this challenge and enhance the robustness of CDNNs, specifically in drone applications, we propose an innovative solution that involves modification of P-CDNN (we called ins Pseudo-Model- Parallelism-based CDNN or PS-CDNN). We have also incorporated novel filters into the drone system to address attacks on intermediate data (feature maps). These filters are trained using multi-strength adversarial training techniques, employing adversarial intermediate data collected from collaborating drones. This reinforcement significantly strengthens CDNNs against potential adversarial attacks. We conducted comprehensive evaluations using two widely recognized benchmark datasets, state-of-the-art Convolutional Neural Network (CNN) models, and a collaborative setup to validate the effectiveness of our approach. These results showcase a remarkable average improvement of X in the top-1 accuracy of the model, highlighting the effectiveness and model-agnostic nature of our approach in drone applications. Furthermore, our approach exhibits exceptional adaptability to various DNN architectures while substantially bolstering the security of drone-based intelligence applications.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/access.2024.3477293
- OA Status
- gold
- Cited By
- 1
- References
- 50
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4403277875
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4403277875Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/access.2024.3477293Digital Object Identifier
- Title
-
Securing Pseudo-Model Parallelism-Based Collaborative DNN Inference for Edge DevicesWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-01-01Full publication date if available
- Authors
-
Adewale Adeyemo, Parth Patel, Syed Rafay Hasan, Mohammad Ashiqur Rahaman, Soamar HomsiList of authors in order
- Landing page
-
https://doi.org/10.1109/access.2024.3477293Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1109/access.2024.3477293Direct OA link when available
- Concepts
-
Computer science, Parallelism (grammar), Inference, Parallel computing, Enhanced Data Rates for GSM Evolution, Data parallelism, Theoretical computer science, Computer architecture, Artificial intelligenceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
50Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4403277875 |
|---|---|
| doi | https://doi.org/10.1109/access.2024.3477293 |
| ids.doi | https://doi.org/10.1109/access.2024.3477293 |
| ids.openalex | https://openalex.org/W4403277875 |
| fwci | 0.36916847 |
| type | article |
| title | Securing Pseudo-Model Parallelism-Based Collaborative DNN Inference for Edge Devices |
| awards[0].id | https://openalex.org/G257724635 |
| awards[0].funder_id | https://openalex.org/F4320306076 |
| awards[0].display_name | |
| awards[0].funder_award_id | OAC 2127188 |
| awards[0].funder_display_name | National Science Foundation |
| biblio.issue | |
| biblio.volume | 12 |
| biblio.last_page | 159965 |
| biblio.first_page | 159952 |
| topics[0].id | https://openalex.org/T10502 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9544000029563904 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2208 |
| topics[0].subfield.display_name | Electrical and Electronic Engineering |
| topics[0].display_name | Advanced Memory and Neural Computing |
| topics[1].id | https://openalex.org/T11017 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.944100022315979 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Chaos-based Image/Signal Encryption |
| topics[2].id | https://openalex.org/T11498 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9287999868392944 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1705 |
| topics[2].subfield.display_name | Computer Networks and Communications |
| topics[2].display_name | Security in Wireless Sensor Networks |
| funders[0].id | https://openalex.org/F4320306076 |
| funders[0].ror | https://ror.org/021nxhr62 |
| funders[0].display_name | National Science Foundation |
| funders[1].id | https://openalex.org/F4320338294 |
| funders[1].ror | https://ror.org/02e2egq70 |
| funders[1].display_name | Air Force Research Laboratory |
| is_xpac | False |
| apc_list.value | 1850 |
| apc_list.currency | USD |
| apc_list.value_usd | 1850 |
| apc_paid.value | 1850 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1850 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8435395956039429 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C2781172179 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6760915517807007 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q853109 |
| concepts[1].display_name | Parallelism (grammar) |
| concepts[2].id | https://openalex.org/C2776214188 |
| concepts[2].level | 2 |
| concepts[2].score | 0.627826452255249 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q408386 |
| concepts[2].display_name | Inference |
| concepts[3].id | https://openalex.org/C173608175 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5762537121772766 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q232661 |
| concepts[3].display_name | Parallel computing |
| concepts[4].id | https://openalex.org/C162307627 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5112655162811279 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q204833 |
| concepts[4].display_name | Enhanced Data Rates for GSM Evolution |
| concepts[5].id | https://openalex.org/C61483411 |
| concepts[5].level | 3 |
| concepts[5].score | 0.4256250560283661 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q3124522 |
| concepts[5].display_name | Data parallelism |
| concepts[6].id | https://openalex.org/C80444323 |
| concepts[6].level | 1 |
| concepts[6].score | 0.36778634786605835 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[6].display_name | Theoretical computer science |
| concepts[7].id | https://openalex.org/C118524514 |
| concepts[7].level | 1 |
| concepts[7].score | 0.3458678126335144 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q173212 |
| concepts[7].display_name | Computer architecture |
| concepts[8].id | https://openalex.org/C154945302 |
| concepts[8].level | 1 |
| concepts[8].score | 0.27532511949539185 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[8].display_name | Artificial intelligence |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.8435395956039429 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/parallelism |
| keywords[1].score | 0.6760915517807007 |
| keywords[1].display_name | Parallelism (grammar) |
| keywords[2].id | https://openalex.org/keywords/inference |
| keywords[2].score | 0.627826452255249 |
| keywords[2].display_name | Inference |
| keywords[3].id | https://openalex.org/keywords/parallel-computing |
| keywords[3].score | 0.5762537121772766 |
| keywords[3].display_name | Parallel computing |
| keywords[4].id | https://openalex.org/keywords/enhanced-data-rates-for-gsm-evolution |
| keywords[4].score | 0.5112655162811279 |
| keywords[4].display_name | Enhanced Data Rates for GSM Evolution |
| keywords[5].id | https://openalex.org/keywords/data-parallelism |
| keywords[5].score | 0.4256250560283661 |
| keywords[5].display_name | Data parallelism |
| keywords[6].id | https://openalex.org/keywords/theoretical-computer-science |
| keywords[6].score | 0.36778634786605835 |
| keywords[6].display_name | Theoretical computer science |
| keywords[7].id | https://openalex.org/keywords/computer-architecture |
| keywords[7].score | 0.3458678126335144 |
| keywords[7].display_name | Computer architecture |
| keywords[8].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[8].score | 0.27532511949539185 |
| keywords[8].display_name | Artificial intelligence |
| language | en |
| locations[0].id | doi:10.1109/access.2024.3477293 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2485537415 |
| locations[0].source.issn | 2169-3536 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2169-3536 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | IEEE Access |
| locations[0].source.host_organization | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_name | Institute of Electrical and Electronics Engineers |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Access |
| locations[0].landing_page_url | https://doi.org/10.1109/access.2024.3477293 |
| locations[1].id | pmh:oai:doaj.org/article:3a7b49454cc64688a78fc297d37e3fb4 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | IEEE Access, Vol 12, Pp 159952-159965 (2024) |
| locations[1].landing_page_url | https://doaj.org/article/3a7b49454cc64688a78fc297d37e3fb4 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5029827645 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-2897-1138 |
| authorships[0].author.display_name | Adewale Adeyemo |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I63920570 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Electrical and Computer Engineering, Tennessee Technological University, Cookeville, TN, USA |
| authorships[0].institutions[0].id | https://openalex.org/I63920570 |
| authorships[0].institutions[0].ror | https://ror.org/05drmrq39 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I63920570 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Tennessee Technological University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Adewale Adeyemo |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Electrical and Computer Engineering, Tennessee Technological University, Cookeville, TN, USA |
| authorships[1].author.id | https://openalex.org/A5012271024 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-5267-3168 |
| authorships[1].author.display_name | Parth Patel |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I63920570 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Electrical and Computer Engineering, Tennessee Technological University, Cookeville, TN, USA |
| authorships[1].institutions[0].id | https://openalex.org/I63920570 |
| authorships[1].institutions[0].ror | https://ror.org/05drmrq39 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I63920570 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Tennessee Technological University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Parth Patel |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Electrical and Computer Engineering, Tennessee Technological University, Cookeville, TN, USA |
| authorships[2].author.id | https://openalex.org/A5034599612 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-0183-8086 |
| authorships[2].author.display_name | Syed Rafay Hasan |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I63920570 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Electrical and Computer Engineering, Tennessee Technological University, Cookeville, TN, USA |
| authorships[2].institutions[0].id | https://openalex.org/I63920570 |
| authorships[2].institutions[0].ror | https://ror.org/05drmrq39 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I63920570 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Tennessee Technological University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Syed Rafay Hasan |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Electrical and Computer Engineering, Tennessee Technological University, Cookeville, TN, USA |
| authorships[3].author.id | https://openalex.org/A5109798553 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Mohammad Ashiqur Rahaman |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I19700959 |
| authorships[3].affiliations[0].raw_affiliation_string | Electrical and Computer Engineering, Florida International University, USA |
| authorships[3].institutions[0].id | https://openalex.org/I19700959 |
| authorships[3].institutions[0].ror | https://ror.org/02gz6gg07 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I19700959 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Florida International University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Mohammad Ashiqur Rahaman |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Electrical and Computer Engineering, Florida International University, USA |
| authorships[4].author.id | https://openalex.org/A5008918228 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Soamar Homsi |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I1280414376 |
| authorships[4].affiliations[0].raw_affiliation_string | US Air Force Research Laboratory, Rome, NY, USA |
| authorships[4].institutions[0].id | https://openalex.org/I1280414376 |
| authorships[4].institutions[0].ror | https://ror.org/02e2egq70 |
| authorships[4].institutions[0].type | facility |
| authorships[4].institutions[0].lineage | https://openalex.org/I1280414376, https://openalex.org/I1330347796, https://openalex.org/I4210102105, https://openalex.org/I4389425425 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | United States Air Force Research Laboratory |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Soamar Homsi |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | US Air Force Research Laboratory, Rome, NY, USA |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1109/access.2024.3477293 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Securing Pseudo-Model Parallelism-Based Collaborative DNN Inference for Edge Devices |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10502 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9544000029563904 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2208 |
| primary_topic.subfield.display_name | Electrical and Electronic Engineering |
| primary_topic.display_name | Advanced Memory and Neural Computing |
| related_works | https://openalex.org/W2950520577, https://openalex.org/W1554644772, https://openalex.org/W2003935582, https://openalex.org/W2494130044, https://openalex.org/W3170887803, https://openalex.org/W74409296, https://openalex.org/W3209384898, https://openalex.org/W4400951174, https://openalex.org/W1595834484, https://openalex.org/W1991844655 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1109/access.2024.3477293 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2485537415 |
| best_oa_location.source.issn | 2169-3536 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2169-3536 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | IEEE Access |
| best_oa_location.source.host_organization | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IEEE Access |
| best_oa_location.landing_page_url | https://doi.org/10.1109/access.2024.3477293 |
| primary_location.id | doi:10.1109/access.2024.3477293 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2485537415 |
| primary_location.source.issn | 2169-3536 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2169-3536 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | IEEE Access |
| primary_location.source.host_organization | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Access |
| primary_location.landing_page_url | https://doi.org/10.1109/access.2024.3477293 |
| publication_date | 2024-01-01 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W6796841969, https://openalex.org/W3129447134, https://openalex.org/W2794459638, https://openalex.org/W2960833983, https://openalex.org/W4289821779, https://openalex.org/W4401753387, https://openalex.org/W4389459125, https://openalex.org/W4402896975, https://openalex.org/W4388041447, https://openalex.org/W4386634637, https://openalex.org/W3135616033, https://openalex.org/W4283211712, https://openalex.org/W4399854483, https://openalex.org/W3136945043, https://openalex.org/W3096558584, https://openalex.org/W4210493845, https://openalex.org/W3123375290, https://openalex.org/W3190310847, https://openalex.org/W4213074318, https://openalex.org/W3130823781, https://openalex.org/W2612193523, https://openalex.org/W2896180420, https://openalex.org/W4313496563, https://openalex.org/W3172552249, https://openalex.org/W4319300189, https://openalex.org/W4378800924, https://openalex.org/W3158689288, https://openalex.org/W4368348028, https://openalex.org/W2883863832, https://openalex.org/W3110777925, https://openalex.org/W3200379833, https://openalex.org/W3161432682, https://openalex.org/W3200886011, https://openalex.org/W2617106563, https://openalex.org/W3039348233, https://openalex.org/W2968041550, https://openalex.org/W4387885657, https://openalex.org/W2427443770, https://openalex.org/W2467239853, https://openalex.org/W2582523608, https://openalex.org/W3090672847, https://openalex.org/W2997560666, https://openalex.org/W6753216052, https://openalex.org/W6780234213, https://openalex.org/W6637373629, https://openalex.org/W3217500439, https://openalex.org/W2108598243, https://openalex.org/W2117876524, https://openalex.org/W2899111971, https://openalex.org/W6756133841 |
| referenced_works_count | 50 |
| abstract_inverted_index.a | 51, 191, 204 |
| abstract_inverted_index.In | 54 |
| abstract_inverted_index.To | 98 |
| abstract_inverted_index.We | 130, 174 |
| abstract_inverted_index.an | 114 |
| abstract_inverted_index.as | 8, 50 |
| abstract_inverted_index.in | 25, 39, 109, 214, 230 |
| abstract_inverted_index.is | 84 |
| abstract_inverted_index.of | 10, 28, 42, 57, 106, 120, 198, 208, 218, 227, 248 |
| abstract_inverted_index.on | 19, 143 |
| abstract_inverted_index.or | 93, 128 |
| abstract_inverted_index.to | 86, 140, 194, 239 |
| abstract_inverted_index.we | 112 |
| abstract_inverted_index.(we | 122 |
| abstract_inverted_index.DNN | 241 |
| abstract_inverted_index.and | 16, 63, 102, 190, 224 |
| abstract_inverted_index.are | 96, 150 |
| abstract_inverted_index.for | 14 |
| abstract_inverted_index.has | 6 |
| abstract_inverted_index.ins | 124 |
| abstract_inverted_index.one | 9, 92 |
| abstract_inverted_index.our | 199, 228, 234 |
| abstract_inverted_index.the | 11, 26, 40, 55, 59, 104, 137, 196, 215, 219, 222, 246 |
| abstract_inverted_index.two | 179 |
| abstract_inverted_index.2.1$ | 212 |
| abstract_inverted_index.CDNN | 47, 60, 127 |
| abstract_inverted_index.Deep | 1, 75 |
| abstract_inverted_index.This | 165 |
| abstract_inverted_index.also | 132 |
| abstract_inverted_index.been | 37 |
| abstract_inverted_index.case | 27 |
| abstract_inverted_index.data | 66, 145, 160 |
| abstract_inverted_index.each | 71 |
| abstract_inverted_index.from | 162 |
| abstract_inverted_index.have | 36, 131 |
| abstract_inverted_index.into | 136 |
| abstract_inverted_index.like | 31 |
| abstract_inverted_index.more | 94 |
| abstract_inverted_index.that | 117 |
| abstract_inverted_index.this | 81, 100 |
| abstract_inverted_index.when | 91 |
| abstract_inverted_index.with | 73 |
| abstract_inverted_index.(CNN) | 188 |
| abstract_inverted_index.(DNN) | 78 |
| abstract_inverted_index.(like | 22 |
| abstract_inverted_index.CDNNs | 169 |
| abstract_inverted_index.These | 148, 201 |
| abstract_inverted_index.drone | 69, 110, 138, 231 |
| abstract_inverted_index.input | 65 |
| abstract_inverted_index.novel | 134 |
| abstract_inverted_index.setup | 193 |
| abstract_inverted_index.top-1 | 216 |
| abstract_inverted_index.using | 152, 178 |
| abstract_inverted_index.while | 243 |
| abstract_inverted_index.(CDNN) | 5 |
| abstract_inverted_index.CDNNs, | 107 |
| abstract_inverted_index.Neural | 2, 76, 186 |
| abstract_inverted_index.P-CDNN | 121 |
| abstract_inverted_index.across | 67 |
| abstract_inverted_index.called | 123 |
| abstract_inverted_index.events | 30 |
| abstract_inverted_index.maps). | 147 |
| abstract_inverted_index.model, | 220 |
| abstract_inverted_index.nature | 226 |
| abstract_inverted_index.system | 139 |
| abstract_inverted_index.widely | 180 |
| abstract_inverted_index.Network | 3, 77, 187 |
| abstract_inverted_index.P-CDNN, | 58 |
| abstract_inverted_index.Several | 34 |
| abstract_inverted_index.address | 99, 141 |
| abstract_inverted_index.adverse | 29 |
| abstract_inverted_index.against | 170 |
| abstract_inverted_index.attacks | 142 |
| abstract_inverted_index.average | 206 |
| abstract_inverted_index.context | 56 |
| abstract_inverted_index.crucial | 52 |
| abstract_inverted_index.devices | 21, 95 |
| abstract_inverted_index.drones. | 164 |
| abstract_inverted_index.emerged | 7 |
| abstract_inverted_index.emerges | 49 |
| abstract_inverted_index.enhance | 103 |
| abstract_inverted_index.filters | 135, 149 |
| abstract_inverted_index.models, | 189 |
| abstract_inverted_index.models. | 79 |
| abstract_inverted_index.natural | 32 |
| abstract_inverted_index.propose | 113 |
| abstract_inverted_index.results | 202 |
| abstract_inverted_index.several | 87 |
| abstract_inverted_index.trained | 151 |
| abstract_inverted_index.various | 240 |
| abstract_inverted_index.(P-CDNN) | 48 |
| abstract_inverted_index.(feature | 146 |
| abstract_inverted_index.However, | 80 |
| abstract_inverted_index.Notably, | 45 |
| abstract_inverted_index.accuracy | 217 |
| abstract_inverted_index.approach | 229, 235 |
| abstract_inverted_index.attacks. | 173 |
| abstract_inverted_index.devices, | 70 |
| abstract_inverted_index.drones), | 23 |
| abstract_inverted_index.equipped | 72 |
| abstract_inverted_index.exhibits | 236 |
| abstract_inverted_index.involves | 118 |
| abstract_inverted_index.multiple | 68 |
| abstract_inverted_index.parllale | 46 |
| abstract_inverted_index.proposed | 38 |
| abstract_inverted_index.security | 88, 247 |
| abstract_inverted_index.showcase | 203 |
| abstract_inverted_index.solution | 116 |
| abstract_inverted_index.training | 155 |
| abstract_inverted_index.validate | 195 |
| abstract_inverted_index.<tex-math | 210 |
| abstract_inverted_index.Inference | 4 |
| abstract_inverted_index.PS-CDNN). | 129 |
| abstract_inverted_index.approach. | 200 |
| abstract_inverted_index.benchmark | 182 |
| abstract_inverted_index.challenge | 101 |
| abstract_inverted_index.collected | 161 |
| abstract_inverted_index.concerns, | 89 |
| abstract_inverted_index.conducted | 175 |
| abstract_inverted_index.datasets, | 183 |
| abstract_inverted_index.efficient | 15 |
| abstract_inverted_index.employing | 157 |
| abstract_inverted_index.framework | 83 |
| abstract_inverted_index.potential | 171 |
| abstract_inverted_index.strategy. | 53 |
| abstract_inverted_index.bolstering | 245 |
| abstract_inverted_index.disasters. | 33 |
| abstract_inverted_index.especially | 24, 90 |
| abstract_inverted_index.inference. | 44 |
| abstract_inverted_index.innovative | 115 |
| abstract_inverted_index.partitions | 62 |
| abstract_inverted_index.recognized | 181 |
| abstract_inverted_index.remarkable | 205 |
| abstract_inverted_index.robustness | 105 |
| abstract_inverted_index.strategies | 13, 35 |
| abstract_inverted_index.vulnerable | 85 |
| abstract_inverted_index.adversarial | 154, 158, 172 |
| abstract_inverted_index.computation | 18 |
| abstract_inverted_index.distributes | 64 |
| abstract_inverted_index.drone-based | 249 |
| abstract_inverted_index.effectively | 61 |
| abstract_inverted_index.evaluations | 177 |
| abstract_inverted_index.exceptional | 237 |
| abstract_inverted_index.improvement | 207 |
| abstract_inverted_index.lightweight | 17 |
| abstract_inverted_index.pre-trained | 74 |
| abstract_inverted_index.significant | 12 |
| abstract_inverted_index.strengthens | 168 |
| abstract_inverted_index.techniques, | 156 |
| abstract_inverted_index.Furthermore, | 233 |
| abstract_inverted_index.adaptability | 238 |
| abstract_inverted_index.compromised. | 97 |
| abstract_inverted_index.highlighting | 221 |
| abstract_inverted_index.incorporated | 133 |
| abstract_inverted_index.intelligence | 250 |
| abstract_inverted_index.intermediate | 144, 159 |
| abstract_inverted_index.modification | 119 |
| abstract_inverted_index.specifically | 108 |
| abstract_inverted_index.Collaborative | 0 |
| abstract_inverted_index.Convolutional | 185 |
| abstract_inverted_index.Pseudo-Model- | 125 |
| abstract_inverted_index.applications, | 111 |
| abstract_inverted_index.applications. | 232, 251 |
| abstract_inverted_index.architectures | 242 |
| abstract_inverted_index.collaborating | 163 |
| abstract_inverted_index.collaborative | 43, 82, 192 |
| abstract_inverted_index.comprehensive | 176 |
| abstract_inverted_index.effectiveness | 197, 223 |
| abstract_inverted_index.reinforcement | 166 |
| abstract_inverted_index.significantly | 167 |
| abstract_inverted_index.substantially | 244 |
| abstract_inverted_index.implementation | 41 |
| abstract_inverted_index.model-agnostic | 225 |
| abstract_inverted_index.multi-strength | 153 |
| abstract_inverted_index.<inline-formula> | 209 |
| abstract_inverted_index.state-of-the-art | 184 |
| abstract_inverted_index.Parallelism-based | 126 |
| abstract_inverted_index.resource-constrained | 20 |
| abstract_inverted_index.notation="LaTeX">$\approx | 211 |
| abstract_inverted_index.</tex-math></inline-formula>X | 213 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile.value | 0.59594979 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |