Securing Vision-Language Models with a Robust Encoder Against Jailbreak and Adversarial Attacks Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2409.07353
Large Vision-Language Models (LVLMs), trained on multimodal big datasets, have significantly advanced AI by excelling in vision-language tasks. However, these models remain vulnerable to adversarial attacks, particularly jailbreak attacks, which bypass safety protocols and cause the model to generate misleading or harmful responses. This vulnerability stems from both the inherent susceptibilities of LLMs and the expanded attack surface introduced by the visual modality. We propose Sim-CLIP+, a novel defense mechanism that adversarially fine-tunes the CLIP vision encoder by leveraging a Siamese architecture. This approach maximizes cosine similarity between perturbed and clean samples, facilitating resilience against adversarial manipulations. Sim-CLIP+ offers a plug-and-play solution, allowing seamless integration into existing LVLM architectures as a robust vision encoder. Unlike previous defenses, our method requires no structural modifications to the LVLM and incurs minimal computational overhead. Sim-CLIP+ demonstrates effectiveness against both gradient-based adversarial attacks and various jailbreak techniques. We evaluate Sim-CLIP+ against three distinct jailbreak attack strategies and perform clean evaluations using standard downstream datasets, including COCO for image captioning and OKVQA for visual question answering. Extensive experiments demonstrate that Sim-CLIP+ maintains high clean accuracy while substantially improving robustness against both gradient-based adversarial attacks and jailbreak techniques. Our code and robust vision encoders are available at https://github.com/speedlab-git/Robust-Encoder-against-Jailbreak-attack.git.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2409.07353
- https://arxiv.org/pdf/2409.07353
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4403621984
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4403621984Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2409.07353Digital Object Identifier
- Title
-
Securing Vision-Language Models with a Robust Encoder Against Jailbreak and Adversarial AttacksWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-09-11Full publication date if available
- Authors
-
Md Zarif Hossain, Ahmed ImteajList of authors in order
- Landing page
-
https://arxiv.org/abs/2409.07353Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2409.07353Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2409.07353Direct OA link when available
- Concepts
-
Adversarial system, Computer science, Encoder, Artificial intelligence, Computer security, Computer vision, Operating systemTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4403621984 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2409.07353 |
| ids.doi | https://doi.org/10.48550/arxiv.2409.07353 |
| ids.openalex | https://openalex.org/W4403621984 |
| fwci | |
| type | preprint |
| title | Securing Vision-Language Models with a Robust Encoder Against Jailbreak and Adversarial Attacks |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11689 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9976999759674072 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Adversarial Robustness in Machine Learning |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C37736160 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8337649703025818 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1801315 |
| concepts[0].display_name | Adversarial system |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6477616429328918 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C118505674 |
| concepts[2].level | 2 |
| concepts[2].score | 0.640882134437561 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q42586063 |
| concepts[2].display_name | Encoder |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.4796372056007385 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C38652104 |
| concepts[4].level | 1 |
| concepts[4].score | 0.42471349239349365 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q3510521 |
| concepts[4].display_name | Computer security |
| concepts[5].id | https://openalex.org/C31972630 |
| concepts[5].level | 1 |
| concepts[5].score | 0.39838290214538574 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[5].display_name | Computer vision |
| concepts[6].id | https://openalex.org/C111919701 |
| concepts[6].level | 1 |
| concepts[6].score | 0.0 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[6].display_name | Operating system |
| keywords[0].id | https://openalex.org/keywords/adversarial-system |
| keywords[0].score | 0.8337649703025818 |
| keywords[0].display_name | Adversarial system |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6477616429328918 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/encoder |
| keywords[2].score | 0.640882134437561 |
| keywords[2].display_name | Encoder |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.4796372056007385 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/computer-security |
| keywords[4].score | 0.42471349239349365 |
| keywords[4].display_name | Computer security |
| keywords[5].id | https://openalex.org/keywords/computer-vision |
| keywords[5].score | 0.39838290214538574 |
| keywords[5].display_name | Computer vision |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2409.07353 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2409.07353 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2409.07353 |
| locations[1].id | doi:10.48550/arxiv.2409.07353 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2409.07353 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5071571852 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Md Zarif Hossain |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Hossain, Md Zarif |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5077711449 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-6975-3997 |
| authorships[1].author.display_name | Ahmed Imteaj |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Imteaj, Ahmed |
| authorships[1].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2409.07353 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Securing Vision-Language Models with a Robust Encoder Against Jailbreak and Adversarial Attacks |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11689 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9976999759674072 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Adversarial Robustness in Machine Learning |
| related_works | https://openalex.org/W2772917594, https://openalex.org/W2036807459, https://openalex.org/W2058170566, https://openalex.org/W2755342338, https://openalex.org/W2166024367, https://openalex.org/W3116076068, https://openalex.org/W2229312674, https://openalex.org/W2951359407, https://openalex.org/W2079911747, https://openalex.org/W1969923398 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2409.07353 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2409.07353 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2409.07353 |
| primary_location.id | pmh:oai:arXiv.org:2409.07353 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2409.07353 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2409.07353 |
| publication_date | 2024-09-11 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 66, 79, 99, 110 |
| abstract_inverted_index.AI | 12 |
| abstract_inverted_index.We | 63, 143 |
| abstract_inverted_index.as | 109 |
| abstract_inverted_index.at | 200 |
| abstract_inverted_index.by | 13, 59, 77 |
| abstract_inverted_index.in | 15 |
| abstract_inverted_index.no | 120 |
| abstract_inverted_index.of | 51 |
| abstract_inverted_index.on | 5 |
| abstract_inverted_index.or | 40 |
| abstract_inverted_index.to | 23, 37, 123 |
| abstract_inverted_index.Our | 192 |
| abstract_inverted_index.and | 33, 53, 89, 126, 139, 152, 165, 189, 194 |
| abstract_inverted_index.are | 198 |
| abstract_inverted_index.big | 7 |
| abstract_inverted_index.for | 162, 167 |
| abstract_inverted_index.our | 117 |
| abstract_inverted_index.the | 35, 48, 54, 60, 73, 124 |
| abstract_inverted_index.CLIP | 74 |
| abstract_inverted_index.COCO | 161 |
| abstract_inverted_index.LLMs | 52 |
| abstract_inverted_index.LVLM | 107, 125 |
| abstract_inverted_index.This | 43, 82 |
| abstract_inverted_index.both | 47, 135, 185 |
| abstract_inverted_index.code | 193 |
| abstract_inverted_index.from | 46 |
| abstract_inverted_index.have | 9 |
| abstract_inverted_index.high | 177 |
| abstract_inverted_index.into | 105 |
| abstract_inverted_index.that | 70, 174 |
| abstract_inverted_index.Large | 0 |
| abstract_inverted_index.OKVQA | 166 |
| abstract_inverted_index.cause | 34 |
| abstract_inverted_index.clean | 90, 154, 178 |
| abstract_inverted_index.image | 163 |
| abstract_inverted_index.model | 36 |
| abstract_inverted_index.novel | 67 |
| abstract_inverted_index.stems | 45 |
| abstract_inverted_index.these | 19 |
| abstract_inverted_index.three | 147 |
| abstract_inverted_index.using | 156 |
| abstract_inverted_index.which | 29 |
| abstract_inverted_index.while | 180 |
| abstract_inverted_index.Models | 2 |
| abstract_inverted_index.Unlike | 114 |
| abstract_inverted_index.attack | 56, 150 |
| abstract_inverted_index.bypass | 30 |
| abstract_inverted_index.cosine | 85 |
| abstract_inverted_index.incurs | 127 |
| abstract_inverted_index.method | 118 |
| abstract_inverted_index.models | 20 |
| abstract_inverted_index.offers | 98 |
| abstract_inverted_index.remain | 21 |
| abstract_inverted_index.robust | 111, 195 |
| abstract_inverted_index.safety | 31 |
| abstract_inverted_index.tasks. | 17 |
| abstract_inverted_index.vision | 75, 112, 196 |
| abstract_inverted_index.visual | 61, 168 |
| abstract_inverted_index.Siamese | 80 |
| abstract_inverted_index.against | 94, 134, 146, 184 |
| abstract_inverted_index.attacks | 138, 188 |
| abstract_inverted_index.between | 87 |
| abstract_inverted_index.defense | 68 |
| abstract_inverted_index.encoder | 76 |
| abstract_inverted_index.harmful | 41 |
| abstract_inverted_index.minimal | 128 |
| abstract_inverted_index.perform | 153 |
| abstract_inverted_index.propose | 64 |
| abstract_inverted_index.surface | 57 |
| abstract_inverted_index.trained | 4 |
| abstract_inverted_index.various | 140 |
| abstract_inverted_index.(LVLMs), | 3 |
| abstract_inverted_index.However, | 18 |
| abstract_inverted_index.accuracy | 179 |
| abstract_inverted_index.advanced | 11 |
| abstract_inverted_index.allowing | 102 |
| abstract_inverted_index.approach | 83 |
| abstract_inverted_index.attacks, | 25, 28 |
| abstract_inverted_index.distinct | 148 |
| abstract_inverted_index.encoder. | 113 |
| abstract_inverted_index.encoders | 197 |
| abstract_inverted_index.evaluate | 144 |
| abstract_inverted_index.existing | 106 |
| abstract_inverted_index.expanded | 55 |
| abstract_inverted_index.generate | 38 |
| abstract_inverted_index.inherent | 49 |
| abstract_inverted_index.previous | 115 |
| abstract_inverted_index.question | 169 |
| abstract_inverted_index.requires | 119 |
| abstract_inverted_index.samples, | 91 |
| abstract_inverted_index.seamless | 103 |
| abstract_inverted_index.standard | 157 |
| abstract_inverted_index.Extensive | 171 |
| abstract_inverted_index.Sim-CLIP+ | 97, 131, 145, 175 |
| abstract_inverted_index.available | 199 |
| abstract_inverted_index.datasets, | 8, 159 |
| abstract_inverted_index.defenses, | 116 |
| abstract_inverted_index.excelling | 14 |
| abstract_inverted_index.improving | 182 |
| abstract_inverted_index.including | 160 |
| abstract_inverted_index.jailbreak | 27, 141, 149, 190 |
| abstract_inverted_index.maintains | 176 |
| abstract_inverted_index.maximizes | 84 |
| abstract_inverted_index.mechanism | 69 |
| abstract_inverted_index.modality. | 62 |
| abstract_inverted_index.overhead. | 130 |
| abstract_inverted_index.perturbed | 88 |
| abstract_inverted_index.protocols | 32 |
| abstract_inverted_index.solution, | 101 |
| abstract_inverted_index.Sim-CLIP+, | 65 |
| abstract_inverted_index.answering. | 170 |
| abstract_inverted_index.captioning | 164 |
| abstract_inverted_index.downstream | 158 |
| abstract_inverted_index.fine-tunes | 72 |
| abstract_inverted_index.introduced | 58 |
| abstract_inverted_index.leveraging | 78 |
| abstract_inverted_index.misleading | 39 |
| abstract_inverted_index.multimodal | 6 |
| abstract_inverted_index.resilience | 93 |
| abstract_inverted_index.responses. | 42 |
| abstract_inverted_index.robustness | 183 |
| abstract_inverted_index.similarity | 86 |
| abstract_inverted_index.strategies | 151 |
| abstract_inverted_index.structural | 121 |
| abstract_inverted_index.vulnerable | 22 |
| abstract_inverted_index.adversarial | 24, 95, 137, 187 |
| abstract_inverted_index.demonstrate | 173 |
| abstract_inverted_index.evaluations | 155 |
| abstract_inverted_index.experiments | 172 |
| abstract_inverted_index.integration | 104 |
| abstract_inverted_index.techniques. | 142, 191 |
| abstract_inverted_index.demonstrates | 132 |
| abstract_inverted_index.facilitating | 92 |
| abstract_inverted_index.particularly | 26 |
| abstract_inverted_index.adversarially | 71 |
| abstract_inverted_index.architecture. | 81 |
| abstract_inverted_index.architectures | 108 |
| abstract_inverted_index.computational | 129 |
| abstract_inverted_index.effectiveness | 133 |
| abstract_inverted_index.modifications | 122 |
| abstract_inverted_index.plug-and-play | 100 |
| abstract_inverted_index.significantly | 10 |
| abstract_inverted_index.substantially | 181 |
| abstract_inverted_index.vulnerability | 44 |
| abstract_inverted_index.gradient-based | 136, 186 |
| abstract_inverted_index.manipulations. | 96 |
| abstract_inverted_index.Vision-Language | 1 |
| abstract_inverted_index.vision-language | 16 |
| abstract_inverted_index.susceptibilities | 50 |
| abstract_inverted_index.https://github.com/speedlab-git/Robust-Encoder-against-Jailbreak-attack.git. | 201 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile |