See Clicks Differently: Modeling User Clicking Alternatively with Multi Classifiers for CTR Prediction Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.1145/3511808.3557694
Many recommender systems optimize click through rates (CTRs) as one of their core goals, and it further breaks down to predicting each item's click probability for a user (user-item click probability) and recommending the top ones to this particular user. User-item click probability is then estimated as a single term, and the basic assumption is that the user has different preferences over items. This is presumably true, but from real-world data, we observe that some people are naturally more active in clicking on items while some are not. This intrinsic tendency contributes to their user-item click probabilities. Besides this, when a user sees a particular item she likes, the click probability for this item increases due to this user-item preference.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1145/3511808.3557694
- https://dl.acm.org/doi/pdf/10.1145/3511808.3557694
- OA Status
- hybrid
- Cited By
- 2
- References
- 21
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4306317229
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4306317229Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1145/3511808.3557694Digital Object Identifier
- Title
-
See Clicks Differently: Modeling User Clicking Alternatively with Multi Classifiers for CTR PredictionWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-10-16Full publication date if available
- Authors
-
Shiwei Lyu, Hongbo Cai, Chaohe Zhang, Shuai Ling, Yue Shen, Xiaodong Zeng, Jinjie Gu, Guannan Zhang, Haipeng ZhangList of authors in order
- Landing page
-
https://doi.org/10.1145/3511808.3557694Publisher landing page
- PDF URL
-
https://dl.acm.org/doi/pdf/10.1145/3511808.3557694Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://dl.acm.org/doi/pdf/10.1145/3511808.3557694Direct OA link when available
- Concepts
-
Computer science, Click-through rate, Recommender system, Preference, Human–computer interaction, Information retrieval, Core (optical fiber), Artificial intelligence, Statistics, Mathematics, TelecommunicationsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2Per-year citation counts (last 5 years)
- References (count)
-
21Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4306317229 |
|---|---|
| doi | https://doi.org/10.1145/3511808.3557694 |
| ids.doi | https://doi.org/10.1145/3511808.3557694 |
| ids.openalex | https://openalex.org/W4306317229 |
| fwci | 0.33089112 |
| type | article |
| title | See Clicks Differently: Modeling User Clicking Alternatively with Multi Classifiers for CTR Prediction |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 4303 |
| biblio.first_page | 4299 |
| topics[0].id | https://openalex.org/T10203 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1710 |
| topics[0].subfield.display_name | Information Systems |
| topics[0].display_name | Recommender Systems and Techniques |
| topics[1].id | https://openalex.org/T12101 |
| topics[1].field.id | https://openalex.org/fields/18 |
| topics[1].field.display_name | Decision Sciences |
| topics[1].score | 0.9965000152587891 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1803 |
| topics[1].subfield.display_name | Management Science and Operations Research |
| topics[1].display_name | Advanced Bandit Algorithms Research |
| topics[2].id | https://openalex.org/T11161 |
| topics[2].field.id | https://openalex.org/fields/14 |
| topics[2].field.display_name | Business, Management and Accounting |
| topics[2].score | 0.9721999764442444 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1406 |
| topics[2].subfield.display_name | Marketing |
| topics[2].display_name | Consumer Market Behavior and Pricing |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.798125147819519 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C115174607 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7769509553909302 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1100934 |
| concepts[1].display_name | Click-through rate |
| concepts[2].id | https://openalex.org/C557471498 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5544414520263672 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q554950 |
| concepts[2].display_name | Recommender system |
| concepts[3].id | https://openalex.org/C2781249084 |
| concepts[3].level | 2 |
| concepts[3].score | 0.521125853061676 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q908656 |
| concepts[3].display_name | Preference |
| concepts[4].id | https://openalex.org/C107457646 |
| concepts[4].level | 1 |
| concepts[4].score | 0.4961729943752289 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q207434 |
| concepts[4].display_name | Human–computer interaction |
| concepts[5].id | https://openalex.org/C23123220 |
| concepts[5].level | 1 |
| concepts[5].score | 0.43897685408592224 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q816826 |
| concepts[5].display_name | Information retrieval |
| concepts[6].id | https://openalex.org/C2164484 |
| concepts[6].level | 2 |
| concepts[6].score | 0.43788713216781616 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q5170150 |
| concepts[6].display_name | Core (optical fiber) |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.32965677976608276 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| concepts[8].id | https://openalex.org/C105795698 |
| concepts[8].level | 1 |
| concepts[8].score | 0.11780202388763428 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[8].display_name | Statistics |
| concepts[9].id | https://openalex.org/C33923547 |
| concepts[9].level | 0 |
| concepts[9].score | 0.09980592131614685 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[9].display_name | Mathematics |
| concepts[10].id | https://openalex.org/C76155785 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[10].display_name | Telecommunications |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.798125147819519 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/click-through-rate |
| keywords[1].score | 0.7769509553909302 |
| keywords[1].display_name | Click-through rate |
| keywords[2].id | https://openalex.org/keywords/recommender-system |
| keywords[2].score | 0.5544414520263672 |
| keywords[2].display_name | Recommender system |
| keywords[3].id | https://openalex.org/keywords/preference |
| keywords[3].score | 0.521125853061676 |
| keywords[3].display_name | Preference |
| keywords[4].id | https://openalex.org/keywords/human–computer-interaction |
| keywords[4].score | 0.4961729943752289 |
| keywords[4].display_name | Human–computer interaction |
| keywords[5].id | https://openalex.org/keywords/information-retrieval |
| keywords[5].score | 0.43897685408592224 |
| keywords[5].display_name | Information retrieval |
| keywords[6].id | https://openalex.org/keywords/core |
| keywords[6].score | 0.43788713216781616 |
| keywords[6].display_name | Core (optical fiber) |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.32965677976608276 |
| keywords[7].display_name | Artificial intelligence |
| keywords[8].id | https://openalex.org/keywords/statistics |
| keywords[8].score | 0.11780202388763428 |
| keywords[8].display_name | Statistics |
| keywords[9].id | https://openalex.org/keywords/mathematics |
| keywords[9].score | 0.09980592131614685 |
| keywords[9].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.1145/3511808.3557694 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4363608762 |
| locations[0].source.issn | |
| locations[0].source.type | conference |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Proceedings of the 31st ACM International Conference on Information & Knowledge Management |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://dl.acm.org/doi/pdf/10.1145/3511808.3557694 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Proceedings of the 31st ACM International Conference on Information & Knowledge Management |
| locations[0].landing_page_url | https://doi.org/10.1145/3511808.3557694 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5071894868 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-9493-0601 |
| authorships[0].author.display_name | Shiwei Lyu |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I30809798 |
| authorships[0].affiliations[0].raw_affiliation_string | Shanghaitech University & Ant Group, Shanghai, China |
| authorships[0].institutions[0].id | https://openalex.org/I30809798 |
| authorships[0].institutions[0].ror | https://ror.org/030bhh786 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I30809798 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | ShanghaiTech University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Shiwei Lyu |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Shanghaitech University & Ant Group, Shanghai, China |
| authorships[1].author.id | https://openalex.org/A5101094066 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Hongbo Cai |
| authorships[1].affiliations[0].raw_affiliation_string | Ant Group, Hangzhou, China |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Hongbo Cai |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Ant Group, Hangzhou, China |
| authorships[2].author.id | https://openalex.org/A5019871741 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Chaohe Zhang |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I20231570 |
| authorships[2].affiliations[0].raw_affiliation_string | Peking University, Beijing, China |
| authorships[2].institutions[0].id | https://openalex.org/I20231570 |
| authorships[2].institutions[0].ror | https://ror.org/02v51f717 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I20231570 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Peking University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Chaohe Zhang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Peking University, Beijing, China |
| authorships[3].author.id | https://openalex.org/A5102936121 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-0214-4334 |
| authorships[3].author.display_name | Shuai Ling |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I30809798 |
| authorships[3].affiliations[0].raw_affiliation_string | Shanghaitech University, Shanghai, China |
| authorships[3].institutions[0].id | https://openalex.org/I30809798 |
| authorships[3].institutions[0].ror | https://ror.org/030bhh786 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I30809798 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | ShanghaiTech University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Shuai Ling |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Shanghaitech University, Shanghai, China |
| authorships[4].author.id | https://openalex.org/A5007885672 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-1046-9000 |
| authorships[4].author.display_name | Yue Shen |
| authorships[4].affiliations[0].raw_affiliation_string | Ant Group, Hangzhou, China |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Yue Shen |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Ant Group, Hangzhou, China |
| authorships[5].author.id | https://openalex.org/A5059787539 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-7638-5443 |
| authorships[5].author.display_name | Xiaodong Zeng |
| authorships[5].affiliations[0].raw_affiliation_string | Ant Group, Hangzhou, China |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Xiaodong Zeng |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Ant Group, Hangzhou, China |
| authorships[6].author.id | https://openalex.org/A5053242349 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-7596-4945 |
| authorships[6].author.display_name | Jinjie Gu |
| authorships[6].affiliations[0].raw_affiliation_string | Ant Group, Hangzhou, China |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Jinjie Gu |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Ant Group, Hangzhou, China |
| authorships[7].author.id | https://openalex.org/A5046509521 |
| authorships[7].author.orcid | https://orcid.org/0000-0001-7256-150X |
| authorships[7].author.display_name | Guannan Zhang |
| authorships[7].affiliations[0].raw_affiliation_string | Ant Group, Hangzhou, China |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Guannan Zhang |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Ant Group, Hangzhou, China |
| authorships[8].author.id | https://openalex.org/A5100758732 |
| authorships[8].author.orcid | https://orcid.org/0000-0001-5741-2311 |
| authorships[8].author.display_name | Haipeng Zhang |
| authorships[8].countries | CN |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I30809798 |
| authorships[8].affiliations[0].raw_affiliation_string | Shanghaitech University, Shanghai, China |
| authorships[8].institutions[0].id | https://openalex.org/I30809798 |
| authorships[8].institutions[0].ror | https://ror.org/030bhh786 |
| authorships[8].institutions[0].type | education |
| authorships[8].institutions[0].lineage | https://openalex.org/I30809798 |
| authorships[8].institutions[0].country_code | CN |
| authorships[8].institutions[0].display_name | ShanghaiTech University |
| authorships[8].author_position | last |
| authorships[8].raw_author_name | Haipeng Zhang |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | Shanghaitech University, Shanghai, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://dl.acm.org/doi/pdf/10.1145/3511808.3557694 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | See Clicks Differently: Modeling User Clicking Alternatively with Multi Classifiers for CTR Prediction |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10203 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1710 |
| primary_topic.subfield.display_name | Information Systems |
| primary_topic.display_name | Recommender Systems and Techniques |
| related_works | https://openalex.org/W4386781444, https://openalex.org/W3092950680, https://openalex.org/W2150182025, https://openalex.org/W4246980185, https://openalex.org/W4317039510, https://openalex.org/W3197542405, https://openalex.org/W2418190244, https://openalex.org/W4238861846, https://openalex.org/W3125580266, https://openalex.org/W1657011257 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1145/3511808.3557694 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4363608762 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | conference |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Proceedings of the 31st ACM International Conference on Information & Knowledge Management |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://dl.acm.org/doi/pdf/10.1145/3511808.3557694 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | proceedings-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Proceedings of the 31st ACM International Conference on Information & Knowledge Management |
| best_oa_location.landing_page_url | https://doi.org/10.1145/3511808.3557694 |
| primary_location.id | doi:10.1145/3511808.3557694 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4363608762 |
| primary_location.source.issn | |
| primary_location.source.type | conference |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Proceedings of the 31st ACM International Conference on Information & Knowledge Management |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://dl.acm.org/doi/pdf/10.1145/3511808.3557694 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Proceedings of the 31st ACM International Conference on Information & Knowledge Management |
| primary_location.landing_page_url | https://doi.org/10.1145/3511808.3557694 |
| publication_date | 2022-10-16 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W2475334473, https://openalex.org/W2512971201, https://openalex.org/W3117684406, https://openalex.org/W2965624713, https://openalex.org/W4288079506, https://openalex.org/W2979450518, https://openalex.org/W2793768763, https://openalex.org/W3093496541, https://openalex.org/W3093519337, https://openalex.org/W3169134134, https://openalex.org/W2295739661, https://openalex.org/W2984100107, https://openalex.org/W2743904806, https://openalex.org/W3193085908, https://openalex.org/W3173335915, https://openalex.org/W3141797743, https://openalex.org/W2962745591, https://openalex.org/W2723293840, https://openalex.org/W3209071406, https://openalex.org/W3104030692, https://openalex.org/W3104439459 |
| referenced_works_count | 21 |
| abstract_inverted_index.a | 26, 47, 100, 103 |
| abstract_inverted_index.as | 8, 46 |
| abstract_inverted_index.in | 80 |
| abstract_inverted_index.is | 43, 54, 64 |
| abstract_inverted_index.it | 15 |
| abstract_inverted_index.of | 10 |
| abstract_inverted_index.on | 82 |
| abstract_inverted_index.to | 19, 36, 92, 116 |
| abstract_inverted_index.we | 71 |
| abstract_inverted_index.and | 14, 31, 50 |
| abstract_inverted_index.are | 76, 86 |
| abstract_inverted_index.but | 67 |
| abstract_inverted_index.due | 115 |
| abstract_inverted_index.for | 25, 111 |
| abstract_inverted_index.has | 58 |
| abstract_inverted_index.one | 9 |
| abstract_inverted_index.she | 106 |
| abstract_inverted_index.the | 33, 51, 56, 108 |
| abstract_inverted_index.top | 34 |
| abstract_inverted_index.Many | 0 |
| abstract_inverted_index.This | 63, 88 |
| abstract_inverted_index.core | 12 |
| abstract_inverted_index.down | 18 |
| abstract_inverted_index.each | 21 |
| abstract_inverted_index.from | 68 |
| abstract_inverted_index.item | 105, 113 |
| abstract_inverted_index.more | 78 |
| abstract_inverted_index.not. | 87 |
| abstract_inverted_index.ones | 35 |
| abstract_inverted_index.over | 61 |
| abstract_inverted_index.sees | 102 |
| abstract_inverted_index.some | 74, 85 |
| abstract_inverted_index.that | 55, 73 |
| abstract_inverted_index.then | 44 |
| abstract_inverted_index.this | 37, 112, 117 |
| abstract_inverted_index.user | 27, 57, 101 |
| abstract_inverted_index.when | 99 |
| abstract_inverted_index.basic | 52 |
| abstract_inverted_index.click | 4, 23, 29, 41, 95, 109 |
| abstract_inverted_index.data, | 70 |
| abstract_inverted_index.items | 83 |
| abstract_inverted_index.rates | 6 |
| abstract_inverted_index.term, | 49 |
| abstract_inverted_index.their | 11, 93 |
| abstract_inverted_index.this, | 98 |
| abstract_inverted_index.true, | 66 |
| abstract_inverted_index.user. | 39 |
| abstract_inverted_index.while | 84 |
| abstract_inverted_index.(CTRs) | 7 |
| abstract_inverted_index.active | 79 |
| abstract_inverted_index.breaks | 17 |
| abstract_inverted_index.goals, | 13 |
| abstract_inverted_index.item's | 22 |
| abstract_inverted_index.items. | 62 |
| abstract_inverted_index.likes, | 107 |
| abstract_inverted_index.people | 75 |
| abstract_inverted_index.single | 48 |
| abstract_inverted_index.Besides | 97 |
| abstract_inverted_index.further | 16 |
| abstract_inverted_index.observe | 72 |
| abstract_inverted_index.systems | 2 |
| abstract_inverted_index.through | 5 |
| abstract_inverted_index.clicking | 81 |
| abstract_inverted_index.optimize | 3 |
| abstract_inverted_index.tendency | 90 |
| abstract_inverted_index.User-item | 40 |
| abstract_inverted_index.different | 59 |
| abstract_inverted_index.estimated | 45 |
| abstract_inverted_index.increases | 114 |
| abstract_inverted_index.intrinsic | 89 |
| abstract_inverted_index.naturally | 77 |
| abstract_inverted_index.user-item | 94, 118 |
| abstract_inverted_index.(user-item | 28 |
| abstract_inverted_index.assumption | 53 |
| abstract_inverted_index.particular | 38, 104 |
| abstract_inverted_index.predicting | 20 |
| abstract_inverted_index.presumably | 65 |
| abstract_inverted_index.real-world | 69 |
| abstract_inverted_index.contributes | 91 |
| abstract_inverted_index.preference. | 119 |
| abstract_inverted_index.preferences | 60 |
| abstract_inverted_index.probability | 24, 42, 110 |
| abstract_inverted_index.recommender | 1 |
| abstract_inverted_index.probability) | 30 |
| abstract_inverted_index.recommending | 32 |
| abstract_inverted_index.probabilities. | 96 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 95 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 9 |
| citation_normalized_percentile.value | 0.53958817 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |