seekrflow: Towards end-to-end automated simulation pipeline with machine-learned force fields for accelerated drug-target kinetic and thermodynamic predictions Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1101/2025.08.13.669965
Accurate prediction of drug-target binding and unbinding kinetics and thermodynamics is essential for guiding drug discovery and lead optimization. However, traditional atomistic simulations are often too computationally expensive to capture rare events that govern ligand (un)binding. Several enhanced sampling methods exist to overcome these limitations, but they require extensive manual intervention and introduce variability and artifacts in free energy and kinetic estimates that limit high-throughput scalability. The present work introduces seekrflow, an automated multiscale milestoning simulation pipeline that streamlines the entire workflow from a single receptor-ligand input structure to kinetic and thermodynamic predictions in a single step. This integrated approach minimizes manual intervention, reduces computational overhead, and enhances the reproducibility and accuracy of kinetic and thermodynamic predictions. The accuracy and efficiency of the pipeline is demonstrated on multiple receptor-ligand complexes, including inhibitors of heat shock protein 90, threonine-tyrosine kinase, and the trypsin protein, with predicted kinetic parameters closely matching experimental estimates. seekrflow establishes a new benchmark for automated and high-throughput physics-based predictions of kinetics and thermodynamics.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1101/2025.08.13.669965
- https://www.biorxiv.org/content/biorxiv/early/2025/08/17/2025.08.13.669965.full.pdf
- OA Status
- green
- References
- 172
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4413345845
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4413345845Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1101/2025.08.13.669965Digital Object Identifier
- Title
-
seekrflow: Towards end-to-end automated simulation pipeline with machine-learned force fields for accelerated drug-target kinetic and thermodynamic predictionsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-08-16Full publication date if available
- Authors
-
Anupam Anand Ojha, Lane Votapka, Suman Dutta, Anson F. Noland, Sonya M. Hanson, Rommie E. AmaroList of authors in order
- Landing page
-
https://doi.org/10.1101/2025.08.13.669965Publisher landing page
- PDF URL
-
https://www.biorxiv.org/content/biorxiv/early/2025/08/17/2025.08.13.669965.full.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.biorxiv.org/content/biorxiv/early/2025/08/17/2025.08.13.669965.full.pdfDirect OA link when available
- Concepts
-
Pipeline (software), Kinetic energy, End-to-end principle, Computer science, Force field (fiction), Simulation, Mechanical engineering, Engineering, Physics, Classical mechanics, Artificial intelligenceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
172Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4413345845 |
|---|---|
| doi | https://doi.org/10.1101/2025.08.13.669965 |
| ids.doi | https://doi.org/10.1101/2025.08.13.669965 |
| ids.openalex | https://openalex.org/W4413345845 |
| fwci | 0.0 |
| type | article |
| title | seekrflow: Towards end-to-end automated simulation pipeline with machine-learned force fields for accelerated drug-target kinetic and thermodynamic predictions |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10211 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9983999729156494 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1703 |
| topics[0].subfield.display_name | Computational Theory and Mathematics |
| topics[0].display_name | Computational Drug Discovery Methods |
| topics[1].id | https://openalex.org/T10044 |
| topics[1].field.id | https://openalex.org/fields/13 |
| topics[1].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[1].score | 0.9962000250816345 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1312 |
| topics[1].subfield.display_name | Molecular Biology |
| topics[1].display_name | Protein Structure and Dynamics |
| topics[2].id | https://openalex.org/T11948 |
| topics[2].field.id | https://openalex.org/fields/25 |
| topics[2].field.display_name | Materials Science |
| topics[2].score | 0.9957000017166138 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2505 |
| topics[2].subfield.display_name | Materials Chemistry |
| topics[2].display_name | Machine Learning in Materials Science |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C43521106 |
| concepts[0].level | 2 |
| concepts[0].score | 0.666585385799408 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q2165493 |
| concepts[0].display_name | Pipeline (software) |
| concepts[1].id | https://openalex.org/C135889238 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6198140382766724 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q46276 |
| concepts[1].display_name | Kinetic energy |
| concepts[2].id | https://openalex.org/C74296488 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5825235247612 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2527392 |
| concepts[2].display_name | End-to-end principle |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.48939481377601624 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C10803110 |
| concepts[4].level | 2 |
| concepts[4].score | 0.44303110241889954 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1341441 |
| concepts[4].display_name | Force field (fiction) |
| concepts[5].id | https://openalex.org/C44154836 |
| concepts[5].level | 1 |
| concepts[5].score | 0.3675879240036011 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q45045 |
| concepts[5].display_name | Simulation |
| concepts[6].id | https://openalex.org/C78519656 |
| concepts[6].level | 1 |
| concepts[6].score | 0.30968308448791504 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q101333 |
| concepts[6].display_name | Mechanical engineering |
| concepts[7].id | https://openalex.org/C127413603 |
| concepts[7].level | 0 |
| concepts[7].score | 0.2992117702960968 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[7].display_name | Engineering |
| concepts[8].id | https://openalex.org/C121332964 |
| concepts[8].level | 0 |
| concepts[8].score | 0.26930928230285645 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[8].display_name | Physics |
| concepts[9].id | https://openalex.org/C74650414 |
| concepts[9].level | 1 |
| concepts[9].score | 0.18422096967697144 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11397 |
| concepts[9].display_name | Classical mechanics |
| concepts[10].id | https://openalex.org/C154945302 |
| concepts[10].level | 1 |
| concepts[10].score | 0.14443686604499817 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[10].display_name | Artificial intelligence |
| keywords[0].id | https://openalex.org/keywords/pipeline |
| keywords[0].score | 0.666585385799408 |
| keywords[0].display_name | Pipeline (software) |
| keywords[1].id | https://openalex.org/keywords/kinetic-energy |
| keywords[1].score | 0.6198140382766724 |
| keywords[1].display_name | Kinetic energy |
| keywords[2].id | https://openalex.org/keywords/end-to-end-principle |
| keywords[2].score | 0.5825235247612 |
| keywords[2].display_name | End-to-end principle |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.48939481377601624 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/force-field |
| keywords[4].score | 0.44303110241889954 |
| keywords[4].display_name | Force field (fiction) |
| keywords[5].id | https://openalex.org/keywords/simulation |
| keywords[5].score | 0.3675879240036011 |
| keywords[5].display_name | Simulation |
| keywords[6].id | https://openalex.org/keywords/mechanical-engineering |
| keywords[6].score | 0.30968308448791504 |
| keywords[6].display_name | Mechanical engineering |
| keywords[7].id | https://openalex.org/keywords/engineering |
| keywords[7].score | 0.2992117702960968 |
| keywords[7].display_name | Engineering |
| keywords[8].id | https://openalex.org/keywords/physics |
| keywords[8].score | 0.26930928230285645 |
| keywords[8].display_name | Physics |
| keywords[9].id | https://openalex.org/keywords/classical-mechanics |
| keywords[9].score | 0.18422096967697144 |
| keywords[9].display_name | Classical mechanics |
| keywords[10].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[10].score | 0.14443686604499817 |
| keywords[10].display_name | Artificial intelligence |
| language | en |
| locations[0].id | doi:10.1101/2025.08.13.669965 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306402567 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| locations[0].source.host_organization | https://openalex.org/I2750212522 |
| locations[0].source.host_organization_name | Cold Spring Harbor Laboratory |
| locations[0].source.host_organization_lineage | https://openalex.org/I2750212522 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.biorxiv.org/content/biorxiv/early/2025/08/17/2025.08.13.669965.full.pdf |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.1101/2025.08.13.669965 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5077404629 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-6588-3092 |
| authorships[0].author.display_name | Anupam Anand Ojha |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210153546, https://openalex.org/I4387153999 |
| authorships[0].affiliations[0].raw_affiliation_string | Center for Computational Biology and Center for Computational Mathematics, Flatiron Institute, New York, NY 000, USA |
| authorships[0].institutions[0].id | https://openalex.org/I4387153999 |
| authorships[0].institutions[0].ror | https://ror.org/00sekdz59 |
| authorships[0].institutions[0].type | nonprofit |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210107338, https://openalex.org/I4387153999 |
| authorships[0].institutions[0].country_code | |
| authorships[0].institutions[0].display_name | Flatiron Institute |
| authorships[0].institutions[1].id | https://openalex.org/I4210153546 |
| authorships[0].institutions[1].ror | https://ror.org/0508h6p74 |
| authorships[0].institutions[1].type | company |
| authorships[0].institutions[1].lineage | https://openalex.org/I4210153546 |
| authorships[0].institutions[1].country_code | US |
| authorships[0].institutions[1].display_name | Flatiron Health (United States) |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Anupam A. Ojha |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Center for Computational Biology and Center for Computational Mathematics, Flatiron Institute, New York, NY 000, USA |
| authorships[1].author.id | https://openalex.org/A5037136118 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-0865-5867 |
| authorships[1].author.display_name | Lane Votapka |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I36258959 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Molecular Biology, University of California San Diego, La Jolla, CA 9093, USA |
| authorships[1].institutions[0].id | https://openalex.org/I36258959 |
| authorships[1].institutions[0].ror | https://ror.org/0168r3w48 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I36258959 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | University of California, San Diego |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Lane W. Votapka |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Molecular Biology, University of California San Diego, La Jolla, CA 9093, USA |
| authorships[2].author.id | https://openalex.org/A5030597768 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-2695-8108 |
| authorships[2].author.display_name | Suman Dutta |
| authorships[2].countries | CA |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210142730 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Molecular Biology, Centre de recherche du Centre hospitalier de l'Université de Montréal, Montréal, QC H2X 0A9, Canada |
| authorships[2].institutions[0].id | https://openalex.org/I4210142730 |
| authorships[2].institutions[0].ror | https://ror.org/0410a8y51 |
| authorships[2].institutions[0].type | healthcare |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210142730 |
| authorships[2].institutions[0].country_code | CA |
| authorships[2].institutions[0].display_name | Centre Hospitalier de l’Université de Montréal |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Shiksha Dutta |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Molecular Biology, Centre de recherche du Centre hospitalier de l'Université de Montréal, Montréal, QC H2X 0A9, Canada |
| authorships[3].author.id | https://openalex.org/A5119358287 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Anson F. Noland |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I36258959 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Chemistry, University of California San Diego, La Jolla, CA 92093, USA |
| authorships[3].institutions[0].id | https://openalex.org/I36258959 |
| authorships[3].institutions[0].ror | https://ror.org/0168r3w48 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I36258959 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | University of California, San Diego |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Anson F. Noland |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Chemistry, University of California San Diego, La Jolla, CA 92093, USA |
| authorships[4].author.id | https://openalex.org/A5041965787 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-8960-5353 |
| authorships[4].author.display_name | Sonya M. Hanson |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210153546, https://openalex.org/I4387153999 |
| authorships[4].affiliations[0].raw_affiliation_string | Center for Computational Biology and Center for Computational Mathematics, Flatiron Institute, New York, NY 000, USA |
| authorships[4].institutions[0].id | https://openalex.org/I4387153999 |
| authorships[4].institutions[0].ror | https://ror.org/00sekdz59 |
| authorships[4].institutions[0].type | nonprofit |
| authorships[4].institutions[0].lineage | https://openalex.org/I4210107338, https://openalex.org/I4387153999 |
| authorships[4].institutions[0].country_code | |
| authorships[4].institutions[0].display_name | Flatiron Institute |
| authorships[4].institutions[1].id | https://openalex.org/I4210153546 |
| authorships[4].institutions[1].ror | https://ror.org/0508h6p74 |
| authorships[4].institutions[1].type | company |
| authorships[4].institutions[1].lineage | https://openalex.org/I4210153546 |
| authorships[4].institutions[1].country_code | US |
| authorships[4].institutions[1].display_name | Flatiron Health (United States) |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Sonya M. Hanson |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Center for Computational Biology and Center for Computational Mathematics, Flatiron Institute, New York, NY 000, USA |
| authorships[5].author.id | https://openalex.org/A5081468273 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-9275-9553 |
| authorships[5].author.display_name | Rommie E. Amaro |
| authorships[5].countries | US |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I36258959 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Molecular Biology, University of California San Diego, La Jolla, CA 9093, USA |
| authorships[5].institutions[0].id | https://openalex.org/I36258959 |
| authorships[5].institutions[0].ror | https://ror.org/0168r3w48 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I36258959 |
| authorships[5].institutions[0].country_code | US |
| authorships[5].institutions[0].display_name | University of California, San Diego |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Rommie E. Amaro |
| authorships[5].is_corresponding | True |
| authorships[5].raw_affiliation_strings | Department of Molecular Biology, University of California San Diego, La Jolla, CA 9093, USA |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.biorxiv.org/content/biorxiv/early/2025/08/17/2025.08.13.669965.full.pdf |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | seekrflow: Towards end-to-end automated simulation pipeline with machine-learned force fields for accelerated drug-target kinetic and thermodynamic predictions |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10211 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9983999729156494 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1703 |
| primary_topic.subfield.display_name | Computational Theory and Mathematics |
| primary_topic.display_name | Computational Drug Discovery Methods |
| related_works | https://openalex.org/W2151749779, https://openalex.org/W3179968364, https://openalex.org/W1974744264, https://openalex.org/W1999612375, https://openalex.org/W2359412950, https://openalex.org/W2938107654, https://openalex.org/W2041310076, https://openalex.org/W2153909955, https://openalex.org/W1999290272, https://openalex.org/W2061830197 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1101/2025.08.13.669965 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306402567 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| best_oa_location.source.host_organization | https://openalex.org/I2750212522 |
| best_oa_location.source.host_organization_name | Cold Spring Harbor Laboratory |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I2750212522 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.biorxiv.org/content/biorxiv/early/2025/08/17/2025.08.13.669965.full.pdf |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.1101/2025.08.13.669965 |
| primary_location.id | doi:10.1101/2025.08.13.669965 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306402567 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| primary_location.source.host_organization | https://openalex.org/I2750212522 |
| primary_location.source.host_organization_name | Cold Spring Harbor Laboratory |
| primary_location.source.host_organization_lineage | https://openalex.org/I2750212522 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.biorxiv.org/content/biorxiv/early/2025/08/17/2025.08.13.669965.full.pdf |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.1101/2025.08.13.669965 |
| publication_date | 2025-08-16 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4320486499, https://openalex.org/W3011843929, https://openalex.org/W2607348308, https://openalex.org/W4376109039, https://openalex.org/W2754938970, https://openalex.org/W1501203786, https://openalex.org/W2983066254, https://openalex.org/W3011501504, https://openalex.org/W4386446579, https://openalex.org/W2730519791, https://openalex.org/W2772606519, https://openalex.org/W3187239789, https://openalex.org/W2581729559, https://openalex.org/W2975875708, https://openalex.org/W2040680919, https://openalex.org/W1910086575, https://openalex.org/W1989960958, https://openalex.org/W2125294721, https://openalex.org/W2416836547, https://openalex.org/W2148755061, https://openalex.org/W2061312993, https://openalex.org/W2207535250, https://openalex.org/W2967471101, https://openalex.org/W2949467224, https://openalex.org/W2095719702, https://openalex.org/W2039369142, https://openalex.org/W4376144230, https://openalex.org/W4255879041, https://openalex.org/W4386346920, https://openalex.org/W4321796082, https://openalex.org/W2333006980, https://openalex.org/W2344332175, https://openalex.org/W2050084987, https://openalex.org/W2804603144, https://openalex.org/W2803489728, https://openalex.org/W2414725821, https://openalex.org/W2461189873, https://openalex.org/W4255584963, https://openalex.org/W2556565974, https://openalex.org/W3217140102, https://openalex.org/W2001398410, https://openalex.org/W4404142486, https://openalex.org/W3022698788, https://openalex.org/W2783073729, https://openalex.org/W2065281489, https://openalex.org/W4318671359, https://openalex.org/W2067236515, https://openalex.org/W1969231606, https://openalex.org/W1989814214, https://openalex.org/W2265661434, https://openalex.org/W4361295032, https://openalex.org/W1988220126, https://openalex.org/W4390506233, https://openalex.org/W2745184447, https://openalex.org/W3016343496, https://openalex.org/W4311623549, https://openalex.org/W2153567720, https://openalex.org/W2593262867, https://openalex.org/W4311287936, https://openalex.org/W4200634284, https://openalex.org/W4395666694, https://openalex.org/W3010816669, https://openalex.org/W1992899488, https://openalex.org/W1178456644, https://openalex.org/W2898962162, https://openalex.org/W4288052230, https://openalex.org/W3044187902, https://openalex.org/W4295096853, https://openalex.org/W4400048270, https://openalex.org/W4283584533, https://openalex.org/W2588867992, https://openalex.org/W3037317174, https://openalex.org/W1881109669, https://openalex.org/W1971008678, https://openalex.org/W2023152464, https://openalex.org/W2999803602, https://openalex.org/W1984658396, https://openalex.org/W4295899912, https://openalex.org/W2105406875, https://openalex.org/W2971028405, https://openalex.org/W2954661395, https://openalex.org/W4247951394, https://openalex.org/W2020187599, https://openalex.org/W2150981663, https://openalex.org/W3046751266, https://openalex.org/W1969189143, https://openalex.org/W4312140457, https://openalex.org/W4362677414, https://openalex.org/W2964910069, https://openalex.org/W3216146155, https://openalex.org/W4393204750, https://openalex.org/W4386156879, https://openalex.org/W2018895990, https://openalex.org/W1581457496, https://openalex.org/W2159010139, https://openalex.org/W4387918243, https://openalex.org/W203363010, https://openalex.org/W4403334720, https://openalex.org/W3010340553, https://openalex.org/W2147022472, https://openalex.org/W2038532826, https://openalex.org/W2051752778, https://openalex.org/W3035815479, https://openalex.org/W2165565773, https://openalex.org/W3187441563, https://openalex.org/W2132786536, https://openalex.org/W2056956258, https://openalex.org/W2927113227, https://openalex.org/W2111687291, https://openalex.org/W1984444278, https://openalex.org/W2010882262, https://openalex.org/W2133620840, https://openalex.org/W2325937861, https://openalex.org/W2005191262, https://openalex.org/W2040370739, https://openalex.org/W1966492828, https://openalex.org/W2913172834, https://openalex.org/W2786145714, https://openalex.org/W2486782373, https://openalex.org/W4392094149, https://openalex.org/W2215436068, https://openalex.org/W2139820020, https://openalex.org/W2999201878, https://openalex.org/W2006148642, https://openalex.org/W2111187586, https://openalex.org/W2060902443, https://openalex.org/W2036926586, https://openalex.org/W2061278019, https://openalex.org/W4391261787, https://openalex.org/W4225277224, https://openalex.org/W2779060209, https://openalex.org/W2987987315, https://openalex.org/W1526728179, https://openalex.org/W2122049402, https://openalex.org/W1779194281, https://openalex.org/W2889502232, https://openalex.org/W2129004089, https://openalex.org/W2588029913, https://openalex.org/W2026165977, https://openalex.org/W2801926893, https://openalex.org/W2886191744, https://openalex.org/W2106871348, https://openalex.org/W1994378895, https://openalex.org/W2328484972, https://openalex.org/W2571277506, https://openalex.org/W4400003995, https://openalex.org/W3176219224, https://openalex.org/W3201247379, https://openalex.org/W4395071372, https://openalex.org/W3134593990, https://openalex.org/W4392151514, https://openalex.org/W2344511238, https://openalex.org/W2593981338, https://openalex.org/W4200065833, https://openalex.org/W2970445901, https://openalex.org/W2114688504, https://openalex.org/W2529601156, https://openalex.org/W2616655501, https://openalex.org/W1978308161, https://openalex.org/W3043528025, https://openalex.org/W2686877571, https://openalex.org/W4408066103, https://openalex.org/W1879205842, https://openalex.org/W2094022774, https://openalex.org/W4389040271, https://openalex.org/W4391800792, https://openalex.org/W4367834949, https://openalex.org/W2026418335, https://openalex.org/W2045876591, https://openalex.org/W4401914504, https://openalex.org/W3100923186, https://openalex.org/W3104975485 |
| referenced_works_count | 172 |
| abstract_inverted_index.a | 83, 94, 153 |
| abstract_inverted_index.an | 71 |
| abstract_inverted_index.in | 56, 93 |
| abstract_inverted_index.is | 10, 124 |
| abstract_inverted_index.of | 2, 112, 121, 132, 162 |
| abstract_inverted_index.on | 126 |
| abstract_inverted_index.to | 28, 41, 88 |
| abstract_inverted_index.90, | 136 |
| abstract_inverted_index.The | 66, 117 |
| abstract_inverted_index.and | 5, 8, 16, 51, 54, 59, 90, 106, 110, 114, 119, 139, 158, 164 |
| abstract_inverted_index.are | 23 |
| abstract_inverted_index.but | 45 |
| abstract_inverted_index.for | 12, 156 |
| abstract_inverted_index.new | 154 |
| abstract_inverted_index.the | 79, 108, 122, 140 |
| abstract_inverted_index.too | 25 |
| abstract_inverted_index.This | 97 |
| abstract_inverted_index.drug | 14 |
| abstract_inverted_index.free | 57 |
| abstract_inverted_index.from | 82 |
| abstract_inverted_index.heat | 133 |
| abstract_inverted_index.lead | 17 |
| abstract_inverted_index.rare | 30 |
| abstract_inverted_index.that | 32, 62, 77 |
| abstract_inverted_index.they | 46 |
| abstract_inverted_index.with | 143 |
| abstract_inverted_index.work | 68 |
| abstract_inverted_index.exist | 40 |
| abstract_inverted_index.input | 86 |
| abstract_inverted_index.limit | 63 |
| abstract_inverted_index.often | 24 |
| abstract_inverted_index.shock | 134 |
| abstract_inverted_index.step. | 96 |
| abstract_inverted_index.these | 43 |
| abstract_inverted_index.energy | 58 |
| abstract_inverted_index.entire | 80 |
| abstract_inverted_index.events | 31 |
| abstract_inverted_index.govern | 33 |
| abstract_inverted_index.ligand | 34 |
| abstract_inverted_index.manual | 49, 101 |
| abstract_inverted_index.single | 84, 95 |
| abstract_inverted_index.Several | 36 |
| abstract_inverted_index.binding | 4 |
| abstract_inverted_index.capture | 29 |
| abstract_inverted_index.closely | 147 |
| abstract_inverted_index.guiding | 13 |
| abstract_inverted_index.kinase, | 138 |
| abstract_inverted_index.kinetic | 60, 89, 113, 145 |
| abstract_inverted_index.methods | 39 |
| abstract_inverted_index.present | 67 |
| abstract_inverted_index.protein | 135 |
| abstract_inverted_index.reduces | 103 |
| abstract_inverted_index.require | 47 |
| abstract_inverted_index.trypsin | 141 |
| abstract_inverted_index.Accurate | 0 |
| abstract_inverted_index.However, | 19 |
| abstract_inverted_index.accuracy | 111, 118 |
| abstract_inverted_index.approach | 99 |
| abstract_inverted_index.enhanced | 37 |
| abstract_inverted_index.enhances | 107 |
| abstract_inverted_index.kinetics | 7, 163 |
| abstract_inverted_index.matching | 148 |
| abstract_inverted_index.multiple | 127 |
| abstract_inverted_index.overcome | 42 |
| abstract_inverted_index.pipeline | 76, 123 |
| abstract_inverted_index.protein, | 142 |
| abstract_inverted_index.sampling | 38 |
| abstract_inverted_index.workflow | 81 |
| abstract_inverted_index.artifacts | 55 |
| abstract_inverted_index.atomistic | 21 |
| abstract_inverted_index.automated | 72, 157 |
| abstract_inverted_index.benchmark | 155 |
| abstract_inverted_index.discovery | 15 |
| abstract_inverted_index.essential | 11 |
| abstract_inverted_index.estimates | 61 |
| abstract_inverted_index.expensive | 27 |
| abstract_inverted_index.extensive | 48 |
| abstract_inverted_index.including | 130 |
| abstract_inverted_index.introduce | 52 |
| abstract_inverted_index.minimizes | 100 |
| abstract_inverted_index.overhead, | 105 |
| abstract_inverted_index.predicted | 144 |
| abstract_inverted_index.seekrflow | 151 |
| abstract_inverted_index.structure | 87 |
| abstract_inverted_index.unbinding | 6 |
| abstract_inverted_index.complexes, | 129 |
| abstract_inverted_index.efficiency | 120 |
| abstract_inverted_index.estimates. | 150 |
| abstract_inverted_index.inhibitors | 131 |
| abstract_inverted_index.integrated | 98 |
| abstract_inverted_index.introduces | 69 |
| abstract_inverted_index.multiscale | 73 |
| abstract_inverted_index.parameters | 146 |
| abstract_inverted_index.prediction | 1 |
| abstract_inverted_index.seekrflow, | 70 |
| abstract_inverted_index.simulation | 75 |
| abstract_inverted_index.drug-target | 3 |
| abstract_inverted_index.establishes | 152 |
| abstract_inverted_index.milestoning | 74 |
| abstract_inverted_index.predictions | 92, 161 |
| abstract_inverted_index.simulations | 22 |
| abstract_inverted_index.streamlines | 78 |
| abstract_inverted_index.traditional | 20 |
| abstract_inverted_index.variability | 53 |
| abstract_inverted_index.(un)binding. | 35 |
| abstract_inverted_index.demonstrated | 125 |
| abstract_inverted_index.experimental | 149 |
| abstract_inverted_index.intervention | 50 |
| abstract_inverted_index.limitations, | 44 |
| abstract_inverted_index.predictions. | 116 |
| abstract_inverted_index.scalability. | 65 |
| abstract_inverted_index.computational | 104 |
| abstract_inverted_index.intervention, | 102 |
| abstract_inverted_index.optimization. | 18 |
| abstract_inverted_index.physics-based | 160 |
| abstract_inverted_index.thermodynamic | 91, 115 |
| abstract_inverted_index.thermodynamics | 9 |
| abstract_inverted_index.computationally | 26 |
| abstract_inverted_index.high-throughput | 64, 159 |
| abstract_inverted_index.receptor-ligand | 85, 128 |
| abstract_inverted_index.reproducibility | 109 |
| abstract_inverted_index.thermodynamics. | 165 |
| abstract_inverted_index.threonine-tyrosine | 137 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5077404629, https://openalex.org/A5081468273 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 6 |
| corresponding_institution_ids | https://openalex.org/I36258959, https://openalex.org/I4210153546, https://openalex.org/I4387153999 |
| citation_normalized_percentile.value | 0.36005354 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |