Segmentation and Classification of Brain Tumor from Magnetic Resonance Images Using K-Means Algorithm and Hybrid PSO-WCA Based Radial Basis Function Neural Network Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.30534/ijatcse/2020/128952020
The manual detection and classification of the tumor becomes a rigorous and hectic task for the radiologists from magnetic resonance images.This paper presents a novel Hybrid PSO-WCA (Particle Swarm Optimization-Water Cycle Algorithm) based Radial Basis Function Neural Network (RBFNN) machine learning classification model for brain tumors classification.The K-means algorithm has been employed for segmentation and GLCM (Gray Level Co-occurrence Matrix) technique for feature extraction.The extracted features are aligned as input to the PSO-WCA based radial basis function neural network for the classification of brain tumors.The weights of the RBFNN are updated by the PSO-WCA (Particle Swarm optimization) algorithm and the centers of the RBFNN are chosen by K-means algorithm.Further, the malignant and benign tumors has been classified by Fast fuzzy c-means, KNN (Nearest neighborhood) algorithm, Fuzzy c means algorithm and K-Means algorithm by taking features as input for visual localization and the performance of the clustering classification has been presented.This research work considered the brain tumor MRI (Magnetic Resonance Image) Dataset-255 from Harvard medical school.The result obtained from the proposed hybrid PSO-WCA-RBFNN classification model shows better classification accuracy of 99.62% and comparison results with the PSO-RBFNN, WCA-RBFNN and LMS-RBFNN models are also presented.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- http://doi.org/10.30534/ijatcse/2020/128952020
- https://doi.org/10.30534/ijatcse/2020/128952020
- OA Status
- bronze
- Cited By
- 1
- References
- 22
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4230063083
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4230063083Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.30534/ijatcse/2020/128952020Digital Object Identifier
- Title
-
Segmentation and Classification of Brain Tumor from Magnetic Resonance Images Using K-Means Algorithm and Hybrid PSO-WCA Based Radial Basis Function Neural NetworkWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-10-15Full publication date if available
- Authors
-
T. Gopi, Satyasis Mishra, Sunita Satapathy, K. V. N. SunithaList of authors in order
- Landing page
-
https://doi.org/10.30534/ijatcse/2020/128952020Publisher landing page
- PDF URL
-
https://doi.org/10.30534/ijatcse/2020/128952020Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
bronzeOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.30534/ijatcse/2020/128952020Direct OA link when available
- Concepts
-
Radial basis function, Artificial neural network, Segmentation, Radial basis function network, Function (biology), Basis (linear algebra), Artificial intelligence, Algorithm, Particle swarm optimization, Computer science, Image segmentation, Pattern recognition (psychology), Magnetic resonance imaging, Mathematics, Medicine, Geometry, Radiology, Biology, Evolutionary biologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2023: 1Per-year citation counts (last 5 years)
- References (count)
-
22Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4230063083 |
|---|---|
| doi | https://doi.org/10.30534/ijatcse/2020/128952020 |
| ids.doi | https://doi.org/10.30534/ijatcse/2020/128952020 |
| ids.openalex | https://openalex.org/W4230063083 |
| fwci | 0.11372911 |
| type | article |
| title | Segmentation and Classification of Brain Tumor from Magnetic Resonance Images Using K-Means Algorithm and Hybrid PSO-WCA Based Radial Basis Function Neural Network |
| biblio.issue | 5 |
| biblio.volume | 9 |
| biblio.last_page | 7807 |
| biblio.first_page | 7800 |
| topics[0].id | https://openalex.org/T12702 |
| topics[0].field.id | https://openalex.org/fields/28 |
| topics[0].field.display_name | Neuroscience |
| topics[0].score | 0.9955999851226807 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2808 |
| topics[0].subfield.display_name | Neurology |
| topics[0].display_name | Brain Tumor Detection and Classification |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C98856871 |
| concepts[0].level | 3 |
| concepts[0].score | 0.773283064365387 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1588488 |
| concepts[0].display_name | Radial basis function |
| concepts[1].id | https://openalex.org/C50644808 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6425251364707947 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[1].display_name | Artificial neural network |
| concepts[2].id | https://openalex.org/C89600930 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5482221245765686 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[2].display_name | Segmentation |
| concepts[3].id | https://openalex.org/C132917294 |
| concepts[3].level | 4 |
| concepts[3].score | 0.5178618431091309 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2679684 |
| concepts[3].display_name | Radial basis function network |
| concepts[4].id | https://openalex.org/C14036430 |
| concepts[4].level | 2 |
| concepts[4].score | 0.502363920211792 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q3736076 |
| concepts[4].display_name | Function (biology) |
| concepts[5].id | https://openalex.org/C12426560 |
| concepts[5].level | 2 |
| concepts[5].score | 0.500770092010498 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q189569 |
| concepts[5].display_name | Basis (linear algebra) |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.4882843494415283 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C11413529 |
| concepts[7].level | 1 |
| concepts[7].score | 0.47224515676498413 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[7].display_name | Algorithm |
| concepts[8].id | https://openalex.org/C85617194 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4617147445678711 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2072794 |
| concepts[8].display_name | Particle swarm optimization |
| concepts[9].id | https://openalex.org/C41008148 |
| concepts[9].level | 0 |
| concepts[9].score | 0.4572678208351135 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[9].display_name | Computer science |
| concepts[10].id | https://openalex.org/C124504099 |
| concepts[10].level | 3 |
| concepts[10].score | 0.4508674740791321 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q56933 |
| concepts[10].display_name | Image segmentation |
| concepts[11].id | https://openalex.org/C153180895 |
| concepts[11].level | 2 |
| concepts[11].score | 0.4347350001335144 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[11].display_name | Pattern recognition (psychology) |
| concepts[12].id | https://openalex.org/C143409427 |
| concepts[12].level | 2 |
| concepts[12].score | 0.42675453424453735 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q161238 |
| concepts[12].display_name | Magnetic resonance imaging |
| concepts[13].id | https://openalex.org/C33923547 |
| concepts[13].level | 0 |
| concepts[13].score | 0.2741733193397522 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[13].display_name | Mathematics |
| concepts[14].id | https://openalex.org/C71924100 |
| concepts[14].level | 0 |
| concepts[14].score | 0.07403627038002014 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[14].display_name | Medicine |
| concepts[15].id | https://openalex.org/C2524010 |
| concepts[15].level | 1 |
| concepts[15].score | 0.06180128455162048 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[15].display_name | Geometry |
| concepts[16].id | https://openalex.org/C126838900 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q77604 |
| concepts[16].display_name | Radiology |
| concepts[17].id | https://openalex.org/C86803240 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[17].display_name | Biology |
| concepts[18].id | https://openalex.org/C78458016 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q840400 |
| concepts[18].display_name | Evolutionary biology |
| keywords[0].id | https://openalex.org/keywords/radial-basis-function |
| keywords[0].score | 0.773283064365387 |
| keywords[0].display_name | Radial basis function |
| keywords[1].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[1].score | 0.6425251364707947 |
| keywords[1].display_name | Artificial neural network |
| keywords[2].id | https://openalex.org/keywords/segmentation |
| keywords[2].score | 0.5482221245765686 |
| keywords[2].display_name | Segmentation |
| keywords[3].id | https://openalex.org/keywords/radial-basis-function-network |
| keywords[3].score | 0.5178618431091309 |
| keywords[3].display_name | Radial basis function network |
| keywords[4].id | https://openalex.org/keywords/function |
| keywords[4].score | 0.502363920211792 |
| keywords[4].display_name | Function (biology) |
| keywords[5].id | https://openalex.org/keywords/basis |
| keywords[5].score | 0.500770092010498 |
| keywords[5].display_name | Basis (linear algebra) |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.4882843494415283 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/algorithm |
| keywords[7].score | 0.47224515676498413 |
| keywords[7].display_name | Algorithm |
| keywords[8].id | https://openalex.org/keywords/particle-swarm-optimization |
| keywords[8].score | 0.4617147445678711 |
| keywords[8].display_name | Particle swarm optimization |
| keywords[9].id | https://openalex.org/keywords/computer-science |
| keywords[9].score | 0.4572678208351135 |
| keywords[9].display_name | Computer science |
| keywords[10].id | https://openalex.org/keywords/image-segmentation |
| keywords[10].score | 0.4508674740791321 |
| keywords[10].display_name | Image segmentation |
| keywords[11].id | https://openalex.org/keywords/pattern-recognition |
| keywords[11].score | 0.4347350001335144 |
| keywords[11].display_name | Pattern recognition (psychology) |
| keywords[12].id | https://openalex.org/keywords/magnetic-resonance-imaging |
| keywords[12].score | 0.42675453424453735 |
| keywords[12].display_name | Magnetic resonance imaging |
| keywords[13].id | https://openalex.org/keywords/mathematics |
| keywords[13].score | 0.2741733193397522 |
| keywords[13].display_name | Mathematics |
| keywords[14].id | https://openalex.org/keywords/medicine |
| keywords[14].score | 0.07403627038002014 |
| keywords[14].display_name | Medicine |
| keywords[15].id | https://openalex.org/keywords/geometry |
| keywords[15].score | 0.06180128455162048 |
| keywords[15].display_name | Geometry |
| language | en |
| locations[0].id | doi:10.30534/ijatcse/2020/128952020 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210180821 |
| locations[0].source.issn | 2278-3091 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 2278-3091 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | International Journal of Advanced Trends in Computer Science and Engineering |
| locations[0].source.host_organization | https://openalex.org/P4327872811 |
| locations[0].source.host_organization_name | The World Academy of Research in Science and Engineering |
| locations[0].source.host_organization_lineage | https://openalex.org/P4327872811 |
| locations[0].source.host_organization_lineage_names | The World Academy of Research in Science and Engineering |
| locations[0].license | |
| locations[0].pdf_url | https://doi.org/10.30534/ijatcse/2020/128952020 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | International Journal of Advanced Trends in Computer Science and Engineering |
| locations[0].landing_page_url | http://doi.org/10.30534/ijatcse/2020/128952020 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5112757740 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | T. Gopi |
| authorships[0].countries | ET |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I865572129 |
| authorships[0].affiliations[0].raw_affiliation_string | Dept. of CSE,SoEEC, Adama Science and Technology University,Ethiopia, |
| authorships[0].institutions[0].id | https://openalex.org/I865572129 |
| authorships[0].institutions[0].ror | https://ror.org/02ccba128 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I865572129 |
| authorships[0].institutions[0].country_code | ET |
| authorships[0].institutions[0].display_name | Adama Science and Technology University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | T Gopi |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Dept. of CSE,SoEEC, Adama Science and Technology University,Ethiopia, |
| authorships[1].author.id | https://openalex.org/A5100709970 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-3515-4467 |
| authorships[1].author.display_name | Satyasis Mishra |
| authorships[1].countries | ET |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I865572129 |
| authorships[1].affiliations[0].raw_affiliation_string | Dept. of ECE,SoEEC, Adama Science and Technology University,Ethiopia, , |
| authorships[1].institutions[0].id | https://openalex.org/I865572129 |
| authorships[1].institutions[0].ror | https://ror.org/02ccba128 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I865572129 |
| authorships[1].institutions[0].country_code | ET |
| authorships[1].institutions[0].display_name | Adama Science and Technology University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Satyasis Mishra |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Dept. of ECE,SoEEC, Adama Science and Technology University,Ethiopia, , |
| authorships[2].author.id | https://openalex.org/A5025440618 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-7811-1489 |
| authorships[2].author.display_name | Sunita Satapathy |
| authorships[2].countries | IN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I47639616 |
| authorships[2].affiliations[0].raw_affiliation_string | Dept.of Zoology, School of Applied Science, Centurion University of Technology & Management, Odisha, India, |
| authorships[2].institutions[0].id | https://openalex.org/I47639616 |
| authorships[2].institutions[0].ror | https://ror.org/03js1g511 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I47639616 |
| authorships[2].institutions[0].country_code | IN |
| authorships[2].institutions[0].display_name | Centurion University of Technology and Management |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Sunita Satapathy |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Dept.of Zoology, School of Applied Science, Centurion University of Technology & Management, Odisha, India, |
| authorships[3].author.id | https://openalex.org/A5032763450 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-1790-8678 |
| authorships[3].author.display_name | K. V. N. Sunitha |
| authorships[3].affiliations[0].raw_affiliation_string | Dept. of CSE, BVRIT Women's Engineering College, Hyderabad, India, |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | K Sunitha |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Dept. of CSE, BVRIT Women's Engineering College, Hyderabad, India, |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.30534/ijatcse/2020/128952020 |
| open_access.oa_status | bronze |
| open_access.any_repository_has_fulltext | False |
| created_date | 2022-05-11T00:00:00 |
| display_name | Segmentation and Classification of Brain Tumor from Magnetic Resonance Images Using K-Means Algorithm and Hybrid PSO-WCA Based Radial Basis Function Neural Network |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12702 |
| primary_topic.field.id | https://openalex.org/fields/28 |
| primary_topic.field.display_name | Neuroscience |
| primary_topic.score | 0.9955999851226807 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2808 |
| primary_topic.subfield.display_name | Neurology |
| primary_topic.display_name | Brain Tumor Detection and Classification |
| related_works | https://openalex.org/W130002755, https://openalex.org/W2897195263, https://openalex.org/W1523814016, https://openalex.org/W1507687735, https://openalex.org/W2112888861, https://openalex.org/W2384647810, https://openalex.org/W3138260068, https://openalex.org/W1985761635, https://openalex.org/W2358117764, https://openalex.org/W2005476934 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2023 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.30534/ijatcse/2020/128952020 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210180821 |
| best_oa_location.source.issn | 2278-3091 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 2278-3091 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | International Journal of Advanced Trends in Computer Science and Engineering |
| best_oa_location.source.host_organization | https://openalex.org/P4327872811 |
| best_oa_location.source.host_organization_name | The World Academy of Research in Science and Engineering |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4327872811 |
| best_oa_location.source.host_organization_lineage_names | The World Academy of Research in Science and Engineering |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://doi.org/10.30534/ijatcse/2020/128952020 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | International Journal of Advanced Trends in Computer Science and Engineering |
| best_oa_location.landing_page_url | http://doi.org/10.30534/ijatcse/2020/128952020 |
| primary_location.id | doi:10.30534/ijatcse/2020/128952020 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210180821 |
| primary_location.source.issn | 2278-3091 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 2278-3091 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | International Journal of Advanced Trends in Computer Science and Engineering |
| primary_location.source.host_organization | https://openalex.org/P4327872811 |
| primary_location.source.host_organization_name | The World Academy of Research in Science and Engineering |
| primary_location.source.host_organization_lineage | https://openalex.org/P4327872811 |
| primary_location.source.host_organization_lineage_names | The World Academy of Research in Science and Engineering |
| primary_location.license | |
| primary_location.pdf_url | https://doi.org/10.30534/ijatcse/2020/128952020 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | International Journal of Advanced Trends in Computer Science and Engineering |
| primary_location.landing_page_url | http://doi.org/10.30534/ijatcse/2020/128952020 |
| publication_date | 2020-10-15 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W2594020746, https://openalex.org/W2963973144, https://openalex.org/W3012337127, https://openalex.org/W3032887577, https://openalex.org/W2998492059, https://openalex.org/W3084693501, https://openalex.org/W2997948703, https://openalex.org/W2998465199, https://openalex.org/W2062299643, https://openalex.org/W2158670896, https://openalex.org/W2034153805, https://openalex.org/W2071858732, https://openalex.org/W2095649164, https://openalex.org/W1951454111, https://openalex.org/W2056597368, https://openalex.org/W1991499331, https://openalex.org/W2131346203, https://openalex.org/W1123170578, https://openalex.org/W2295751533, https://openalex.org/W2147777475, https://openalex.org/W2472057509, https://openalex.org/W2136038762 |
| referenced_works_count | 22 |
| abstract_inverted_index.a | 9, 23 |
| abstract_inverted_index.c | 126 |
| abstract_inverted_index.as | 68, 135 |
| abstract_inverted_index.by | 91, 106, 117, 132 |
| abstract_inverted_index.of | 5, 82, 86, 101, 143, 178 |
| abstract_inverted_index.to | 70 |
| abstract_inverted_index.KNN | 121 |
| abstract_inverted_index.MRI | 156 |
| abstract_inverted_index.The | 0 |
| abstract_inverted_index.and | 3, 11, 54, 98, 111, 129, 140, 180, 187 |
| abstract_inverted_index.are | 66, 89, 104, 190 |
| abstract_inverted_index.for | 14, 43, 52, 61, 79, 137 |
| abstract_inverted_index.has | 49, 114, 147 |
| abstract_inverted_index.the | 6, 15, 71, 80, 87, 92, 99, 102, 109, 141, 144, 153, 168, 184 |
| abstract_inverted_index.Fast | 118 |
| abstract_inverted_index.GLCM | 55 |
| abstract_inverted_index.also | 191 |
| abstract_inverted_index.been | 50, 115, 148 |
| abstract_inverted_index.from | 17, 161, 167 |
| abstract_inverted_index.task | 13 |
| abstract_inverted_index.with | 183 |
| abstract_inverted_index.work | 151 |
| abstract_inverted_index.(Gray | 56 |
| abstract_inverted_index.Basis | 34 |
| abstract_inverted_index.Cycle | 30 |
| abstract_inverted_index.Fuzzy | 125 |
| abstract_inverted_index.Level | 57 |
| abstract_inverted_index.RBFNN | 88, 103 |
| abstract_inverted_index.Swarm | 28, 95 |
| abstract_inverted_index.based | 32, 73 |
| abstract_inverted_index.basis | 75 |
| abstract_inverted_index.brain | 44, 83, 154 |
| abstract_inverted_index.fuzzy | 119 |
| abstract_inverted_index.input | 69, 136 |
| abstract_inverted_index.means | 127 |
| abstract_inverted_index.model | 42, 173 |
| abstract_inverted_index.novel | 24 |
| abstract_inverted_index.paper | 21 |
| abstract_inverted_index.shows | 174 |
| abstract_inverted_index.tumor | 7, 155 |
| abstract_inverted_index.99.62% | 179 |
| abstract_inverted_index.Hybrid | 25 |
| abstract_inverted_index.Image) | 159 |
| abstract_inverted_index.Neural | 36 |
| abstract_inverted_index.Radial | 33 |
| abstract_inverted_index.benign | 112 |
| abstract_inverted_index.better | 175 |
| abstract_inverted_index.chosen | 105 |
| abstract_inverted_index.hectic | 12 |
| abstract_inverted_index.hybrid | 170 |
| abstract_inverted_index.manual | 1 |
| abstract_inverted_index.models | 189 |
| abstract_inverted_index.neural | 77 |
| abstract_inverted_index.radial | 74 |
| abstract_inverted_index.result | 165 |
| abstract_inverted_index.taking | 133 |
| abstract_inverted_index.tumors | 45, 113 |
| abstract_inverted_index.visual | 138 |
| abstract_inverted_index.(RBFNN) | 38 |
| abstract_inverted_index.Harvard | 162 |
| abstract_inverted_index.K-Means | 130 |
| abstract_inverted_index.K-means | 47, 107 |
| abstract_inverted_index.Matrix) | 59 |
| abstract_inverted_index.Network | 37 |
| abstract_inverted_index.PSO-WCA | 26, 72, 93 |
| abstract_inverted_index.aligned | 67 |
| abstract_inverted_index.becomes | 8 |
| abstract_inverted_index.centers | 100 |
| abstract_inverted_index.feature | 62 |
| abstract_inverted_index.machine | 39 |
| abstract_inverted_index.medical | 163 |
| abstract_inverted_index.network | 78 |
| abstract_inverted_index.results | 182 |
| abstract_inverted_index.updated | 90 |
| abstract_inverted_index.weights | 85 |
| abstract_inverted_index.(Nearest | 122 |
| abstract_inverted_index.Function | 35 |
| abstract_inverted_index.accuracy | 177 |
| abstract_inverted_index.c-means, | 120 |
| abstract_inverted_index.employed | 51 |
| abstract_inverted_index.features | 65, 134 |
| abstract_inverted_index.function | 76 |
| abstract_inverted_index.learning | 40 |
| abstract_inverted_index.magnetic | 18 |
| abstract_inverted_index.obtained | 166 |
| abstract_inverted_index.presents | 22 |
| abstract_inverted_index.proposed | 169 |
| abstract_inverted_index.research | 150 |
| abstract_inverted_index.rigorous | 10 |
| abstract_inverted_index.(Magnetic | 157 |
| abstract_inverted_index.(Particle | 27, 94 |
| abstract_inverted_index.LMS-RBFNN | 188 |
| abstract_inverted_index.Resonance | 158 |
| abstract_inverted_index.WCA-RBFNN | 186 |
| abstract_inverted_index.algorithm | 48, 97, 128, 131 |
| abstract_inverted_index.detection | 2 |
| abstract_inverted_index.extracted | 64 |
| abstract_inverted_index.malignant | 110 |
| abstract_inverted_index.resonance | 19 |
| abstract_inverted_index.technique | 60 |
| abstract_inverted_index.Algorithm) | 31 |
| abstract_inverted_index.PSO-RBFNN, | 185 |
| abstract_inverted_index.algorithm, | 124 |
| abstract_inverted_index.classified | 116 |
| abstract_inverted_index.clustering | 145 |
| abstract_inverted_index.comparison | 181 |
| abstract_inverted_index.considered | 152 |
| abstract_inverted_index.presented. | 192 |
| abstract_inverted_index.school.The | 164 |
| abstract_inverted_index.tumors.The | 84 |
| abstract_inverted_index.Dataset-255 | 160 |
| abstract_inverted_index.images.This | 20 |
| abstract_inverted_index.performance | 142 |
| abstract_inverted_index.localization | 139 |
| abstract_inverted_index.radiologists | 16 |
| abstract_inverted_index.segmentation | 53 |
| abstract_inverted_index.Co-occurrence | 58 |
| abstract_inverted_index.PSO-WCA-RBFNN | 171 |
| abstract_inverted_index.neighborhood) | 123 |
| abstract_inverted_index.optimization) | 96 |
| abstract_inverted_index.classification | 4, 41, 81, 146, 172, 176 |
| abstract_inverted_index.extraction.The | 63 |
| abstract_inverted_index.presented.This | 149 |
| abstract_inverted_index.Optimization-Water | 29 |
| abstract_inverted_index.algorithm.Further, | 108 |
| abstract_inverted_index.classification.The | 46 |
| cited_by_percentile_year.max | 94 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.51437478 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |