Segmentation and quantification of venous structures and perivascular spaces in the thalamus in epilepsy using 7 Tesla MRI Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1016/j.brain.2023.100089
Background and purpose: Epilepsy is a complex neurological disorder affecting 50 million people worldwide. Persistent seizures may correlate with neural network, microstructural, and vascular changes within the thalamus. These thalamic changes may result from seizure activity or broader alterations involving neuronal vasculature and neuroinflammatory processes linked to glymphatic drainage. Improved resolution with Ultra-high field (UHF) magnetic resonance imaging (MRI) may be useful in identifying possible thalamic vascular abnormalities not otherwise detectable at lower field strengths. Materials and methods: We outline a novel method which leverages UHF neuroimaging for detection and quantification of vessels and perivascular spaces (PVS) within the thalamus in 25 epilepsy patients and 16 controls, to uncover possible underlying imaging biomarkers of epilepsy. In our analysis, we optimize a MATLAB-based Frangi-based detection tool called Perivascular Space Semi-Automated Segmentation (PVSSAS) to detect thalamic PVSs, and additionally use a second Frangi-based segmentation tool method to automate detection of vascular structures in the thalamus. The resulting PVS and vessel masks were used to quantify differences in the number of vessels, PVS, overlaps, and number of PVS overlaps per vessel detected between groups, using a Hessian detection filter linked on an 18-connected network. Results: We found significantly more thalamic PVS (p = 0.0307) and a significant increase in the number of thalamic vessels (p = 0.038) in patients compared to controls. Conclusion: Here we have developed a novel process which leverages UHF MRI to quantify and detect thalamic vessels and PVS that may provide a potential neuroimaging biomarker of epilepsy. Statement of Significance: We use 7T, ultra-high field MRI and employed an innovative combination of semi-automated perivascular space segmentation and automated vessel segmentation to visualize and quantify vessels and perivascular spaces (PVS) within the thalamus, a highly cited region of interest in epilepsy. To our knowledge, this is the first study to semi-automatically visualize and segment PVS in the thalamus and automatically detect thalamic vessels. We uncovered detectable differences in thalamic vasculature and PVS. These findings suggests that increases in the number of thalamic PVS and vessels may be a potential neuroimaging biomarker in epilepsy. This tool may be useful in the detection of subtle vascular changes in other regions of the brain related to epilepsy or can be employed in other neurological conditions.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.brain.2023.100089
- OA Status
- gold
- Cited By
- 3
- References
- 43
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4390146468
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4390146468Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.brain.2023.100089Digital Object Identifier
- Title
-
Segmentation and quantification of venous structures and perivascular spaces in the thalamus in epilepsy using 7 Tesla MRIWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-12-23Full publication date if available
- Authors
-
Mackenzie Langan, Gaurav Verma, Bradley N. Delman, Lara Marcuse, Madeline Fields, Rebecca Feldman, Priti BalchandaniList of authors in order
- Landing page
-
https://doi.org/10.1016/j.brain.2023.100089Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.brain.2023.100089Direct OA link when available
- Concepts
-
Thalamus, Epilepsy, Neuroimaging, Neuroscience, Magnetic resonance imaging, Perivascular space, Connectomics, Posterior cingulate, Computer science, Artificial intelligence, Radiology, Medicine, Functional magnetic resonance imaging, Psychology, Functional connectivity, ConnectomeTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
3Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 3Per-year citation counts (last 5 years)
- References (count)
-
43Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4390146468 |
|---|---|
| doi | https://doi.org/10.1016/j.brain.2023.100089 |
| ids.doi | https://doi.org/10.1016/j.brain.2023.100089 |
| ids.openalex | https://openalex.org/W4390146468 |
| fwci | 0.63099586 |
| type | article |
| title | Segmentation and quantification of venous structures and perivascular spaces in the thalamus in epilepsy using 7 Tesla MRI |
| awards[0].id | https://openalex.org/G761570514 |
| awards[0].funder_id | https://openalex.org/F4320332161 |
| awards[0].display_name | |
| awards[0].funder_award_id | R00NS070821 |
| awards[0].funder_display_name | National Institutes of Health |
| biblio.issue | |
| biblio.volume | 6 |
| biblio.last_page | 100089 |
| biblio.first_page | 100089 |
| topics[0].id | https://openalex.org/T11406 |
| topics[0].field.id | https://openalex.org/fields/28 |
| topics[0].field.display_name | Neuroscience |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2804 |
| topics[0].subfield.display_name | Cellular and Molecular Neuroscience |
| topics[0].display_name | Cerebrospinal fluid and hydrocephalus |
| topics[1].id | https://openalex.org/T10094 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9997000098228455 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2738 |
| topics[1].subfield.display_name | Psychiatry and Mental health |
| topics[1].display_name | Epilepsy research and treatment |
| topics[2].id | https://openalex.org/T12552 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9997000098228455 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2735 |
| topics[2].subfield.display_name | Pediatrics, Perinatology and Child Health |
| topics[2].display_name | Fetal and Pediatric Neurological Disorders |
| funders[0].id | https://openalex.org/F4320309658 |
| funders[0].ror | https://ror.org/04a9tmd77 |
| funders[0].display_name | Icahn School of Medicine at Mount Sinai |
| funders[1].id | https://openalex.org/F4320332161 |
| funders[1].ror | https://ror.org/01cwqze88 |
| funders[1].display_name | National Institutes of Health |
| is_xpac | False |
| apc_list.value | 1300 |
| apc_list.currency | USD |
| apc_list.value_usd | 1300 |
| apc_paid.value | 1300 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1300 |
| concepts[0].id | https://openalex.org/C2779246727 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7090144157409668 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q184215 |
| concepts[0].display_name | Thalamus |
| concepts[1].id | https://openalex.org/C2778186239 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6603520512580872 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q41571 |
| concepts[1].display_name | Epilepsy |
| concepts[2].id | https://openalex.org/C58693492 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6205807328224182 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q551875 |
| concepts[2].display_name | Neuroimaging |
| concepts[3].id | https://openalex.org/C169760540 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5415523052215576 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q207011 |
| concepts[3].display_name | Neuroscience |
| concepts[4].id | https://openalex.org/C143409427 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5313653945922852 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q161238 |
| concepts[4].display_name | Magnetic resonance imaging |
| concepts[5].id | https://openalex.org/C2777799939 |
| concepts[5].level | 2 |
| concepts[5].score | 0.49837756156921387 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1711381 |
| concepts[5].display_name | Perivascular space |
| concepts[6].id | https://openalex.org/C2779097318 |
| concepts[6].level | 4 |
| concepts[6].score | 0.4341449737548828 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2993446 |
| concepts[6].display_name | Connectomics |
| concepts[7].id | https://openalex.org/C2778733324 |
| concepts[7].level | 3 |
| concepts[7].score | 0.4227589964866638 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2998088 |
| concepts[7].display_name | Posterior cingulate |
| concepts[8].id | https://openalex.org/C41008148 |
| concepts[8].level | 0 |
| concepts[8].score | 0.420486181974411 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[8].display_name | Computer science |
| concepts[9].id | https://openalex.org/C154945302 |
| concepts[9].level | 1 |
| concepts[9].score | 0.3599802553653717 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[9].display_name | Artificial intelligence |
| concepts[10].id | https://openalex.org/C126838900 |
| concepts[10].level | 1 |
| concepts[10].score | 0.33208680152893066 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q77604 |
| concepts[10].display_name | Radiology |
| concepts[11].id | https://openalex.org/C71924100 |
| concepts[11].level | 0 |
| concepts[11].score | 0.33129382133483887 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[11].display_name | Medicine |
| concepts[12].id | https://openalex.org/C2779226451 |
| concepts[12].level | 2 |
| concepts[12].score | 0.23071861267089844 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q903809 |
| concepts[12].display_name | Functional magnetic resonance imaging |
| concepts[13].id | https://openalex.org/C15744967 |
| concepts[13].level | 0 |
| concepts[13].score | 0.2221289575099945 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[13].display_name | Psychology |
| concepts[14].id | https://openalex.org/C3018011982 |
| concepts[14].level | 2 |
| concepts[14].score | 0.1356634497642517 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q7316120 |
| concepts[14].display_name | Functional connectivity |
| concepts[15].id | https://openalex.org/C45715564 |
| concepts[15].level | 3 |
| concepts[15].score | 0.13370192050933838 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q1292103 |
| concepts[15].display_name | Connectome |
| keywords[0].id | https://openalex.org/keywords/thalamus |
| keywords[0].score | 0.7090144157409668 |
| keywords[0].display_name | Thalamus |
| keywords[1].id | https://openalex.org/keywords/epilepsy |
| keywords[1].score | 0.6603520512580872 |
| keywords[1].display_name | Epilepsy |
| keywords[2].id | https://openalex.org/keywords/neuroimaging |
| keywords[2].score | 0.6205807328224182 |
| keywords[2].display_name | Neuroimaging |
| keywords[3].id | https://openalex.org/keywords/neuroscience |
| keywords[3].score | 0.5415523052215576 |
| keywords[3].display_name | Neuroscience |
| keywords[4].id | https://openalex.org/keywords/magnetic-resonance-imaging |
| keywords[4].score | 0.5313653945922852 |
| keywords[4].display_name | Magnetic resonance imaging |
| keywords[5].id | https://openalex.org/keywords/perivascular-space |
| keywords[5].score | 0.49837756156921387 |
| keywords[5].display_name | Perivascular space |
| keywords[6].id | https://openalex.org/keywords/connectomics |
| keywords[6].score | 0.4341449737548828 |
| keywords[6].display_name | Connectomics |
| keywords[7].id | https://openalex.org/keywords/posterior-cingulate |
| keywords[7].score | 0.4227589964866638 |
| keywords[7].display_name | Posterior cingulate |
| keywords[8].id | https://openalex.org/keywords/computer-science |
| keywords[8].score | 0.420486181974411 |
| keywords[8].display_name | Computer science |
| keywords[9].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[9].score | 0.3599802553653717 |
| keywords[9].display_name | Artificial intelligence |
| keywords[10].id | https://openalex.org/keywords/radiology |
| keywords[10].score | 0.33208680152893066 |
| keywords[10].display_name | Radiology |
| keywords[11].id | https://openalex.org/keywords/medicine |
| keywords[11].score | 0.33129382133483887 |
| keywords[11].display_name | Medicine |
| keywords[12].id | https://openalex.org/keywords/functional-magnetic-resonance-imaging |
| keywords[12].score | 0.23071861267089844 |
| keywords[12].display_name | Functional magnetic resonance imaging |
| keywords[13].id | https://openalex.org/keywords/psychology |
| keywords[13].score | 0.2221289575099945 |
| keywords[13].display_name | Psychology |
| keywords[14].id | https://openalex.org/keywords/functional-connectivity |
| keywords[14].score | 0.1356634497642517 |
| keywords[14].display_name | Functional connectivity |
| keywords[15].id | https://openalex.org/keywords/connectome |
| keywords[15].score | 0.13370192050933838 |
| keywords[15].display_name | Connectome |
| language | en |
| locations[0].id | doi:10.1016/j.brain.2023.100089 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210186738 |
| locations[0].source.issn | 2666-5220 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2666-5220 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Brain Multiphysics |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Brain Multiphysics |
| locations[0].landing_page_url | https://doi.org/10.1016/j.brain.2023.100089 |
| locations[1].id | pmh:oai:doaj.org/article:e31ecc70505d496187ab8a5281bb0d7c |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Brain Multiphysics, Vol 6, Iss , Pp 100089- (2024) |
| locations[1].landing_page_url | https://doaj.org/article/e31ecc70505d496187ab8a5281bb0d7c |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5080975452 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-7783-0414 |
| authorships[0].author.display_name | Mackenzie Langan |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I98704320 |
| authorships[0].affiliations[0].raw_affiliation_string | Icahn School of Medicine at Mount Sinai, Biomedical Engineering and Imaging Institute, New York, NY |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I98704320 |
| authorships[0].affiliations[1].raw_affiliation_string | Icahn School of Medicine at Mount Sinai, New York, NY |
| authorships[0].institutions[0].id | https://openalex.org/I98704320 |
| authorships[0].institutions[0].ror | https://ror.org/04a9tmd77 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I1320796813, https://openalex.org/I98704320 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Icahn School of Medicine at Mount Sinai |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Mackenzie T. Langan |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Icahn School of Medicine at Mount Sinai, Biomedical Engineering and Imaging Institute, New York, NY, Icahn School of Medicine at Mount Sinai, New York, NY |
| authorships[1].author.id | https://openalex.org/A5080617925 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-7157-439X |
| authorships[1].author.display_name | Gaurav Verma |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I98704320 |
| authorships[1].affiliations[0].raw_affiliation_string | Icahn School of Medicine at Mount Sinai, Biomedical Engineering and Imaging Institute, New York, NY |
| authorships[1].institutions[0].id | https://openalex.org/I98704320 |
| authorships[1].institutions[0].ror | https://ror.org/04a9tmd77 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I1320796813, https://openalex.org/I98704320 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Icahn School of Medicine at Mount Sinai |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Gaurav Verma |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Icahn School of Medicine at Mount Sinai, Biomedical Engineering and Imaging Institute, New York, NY |
| authorships[2].author.id | https://openalex.org/A5082877649 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-9792-8942 |
| authorships[2].author.display_name | Bradley N. Delman |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I98704320 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY |
| authorships[2].institutions[0].id | https://openalex.org/I98704320 |
| authorships[2].institutions[0].ror | https://ror.org/04a9tmd77 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I1320796813, https://openalex.org/I98704320 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Icahn School of Medicine at Mount Sinai |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Bradley N. Delman |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY |
| authorships[3].author.id | https://openalex.org/A5066252075 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-1494-7241 |
| authorships[3].author.display_name | Lara Marcuse |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I98704320 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY |
| authorships[3].institutions[0].id | https://openalex.org/I98704320 |
| authorships[3].institutions[0].ror | https://ror.org/04a9tmd77 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I1320796813, https://openalex.org/I98704320 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Icahn School of Medicine at Mount Sinai |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Lara V. Marcuse |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY |
| authorships[4].author.id | https://openalex.org/A5000818895 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-0661-4153 |
| authorships[4].author.display_name | Madeline Fields |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I98704320 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY |
| authorships[4].institutions[0].id | https://openalex.org/I98704320 |
| authorships[4].institutions[0].ror | https://ror.org/04a9tmd77 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I1320796813, https://openalex.org/I98704320 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | Icahn School of Medicine at Mount Sinai |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Madeline C. Fields |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY |
| authorships[5].author.id | https://openalex.org/A5036456024 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-8403-9807 |
| authorships[5].author.display_name | Rebecca Feldman |
| authorships[5].countries | CA |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I141945490 |
| authorships[5].affiliations[0].raw_affiliation_string | University of British Columbia, Computer Science, Math, Physics, and Statistics, Kelowna, BC |
| authorships[5].institutions[0].id | https://openalex.org/I141945490 |
| authorships[5].institutions[0].ror | https://ror.org/03rmrcq20 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I141945490, https://openalex.org/I4210128534, https://openalex.org/I4210135497, https://openalex.org/I4387154919 |
| authorships[5].institutions[0].country_code | CA |
| authorships[5].institutions[0].display_name | University of British Columbia |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Rebecca Feldman |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | University of British Columbia, Computer Science, Math, Physics, and Statistics, Kelowna, BC |
| authorships[6].author.id | https://openalex.org/A5043723831 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-7709-5835 |
| authorships[6].author.display_name | Priti Balchandani |
| authorships[6].countries | US |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I98704320 |
| authorships[6].affiliations[0].raw_affiliation_string | Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY |
| authorships[6].affiliations[1].institution_ids | https://openalex.org/I98704320 |
| authorships[6].affiliations[1].raw_affiliation_string | Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY |
| authorships[6].affiliations[2].institution_ids | https://openalex.org/I98704320 |
| authorships[6].affiliations[2].raw_affiliation_string | Icahn School of Medicine at Mount Sinai, Biomedical Engineering and Imaging Institute, New York, NY |
| authorships[6].institutions[0].id | https://openalex.org/I98704320 |
| authorships[6].institutions[0].ror | https://ror.org/04a9tmd77 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I1320796813, https://openalex.org/I98704320 |
| authorships[6].institutions[0].country_code | US |
| authorships[6].institutions[0].display_name | Icahn School of Medicine at Mount Sinai |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Priti Balchandani |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, Icahn School of Medicine at Mount Sinai, Biomedical Engineering and Imaging Institute, New York, NY, Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.brain.2023.100089 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Segmentation and quantification of venous structures and perivascular spaces in the thalamus in epilepsy using 7 Tesla MRI |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11406 |
| primary_topic.field.id | https://openalex.org/fields/28 |
| primary_topic.field.display_name | Neuroscience |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2804 |
| primary_topic.subfield.display_name | Cellular and Molecular Neuroscience |
| primary_topic.display_name | Cerebrospinal fluid and hydrocephalus |
| related_works | https://openalex.org/W2807503652, https://openalex.org/W2212379672, https://openalex.org/W2424680827, https://openalex.org/W2079675757, https://openalex.org/W2726164105, https://openalex.org/W4362673723, https://openalex.org/W2038341842, https://openalex.org/W4285532027, https://openalex.org/W3117665700, https://openalex.org/W2025507197 |
| cited_by_count | 3 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 3 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1016/j.brain.2023.100089 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210186738 |
| best_oa_location.source.issn | 2666-5220 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2666-5220 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Brain Multiphysics |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Elsevier BV |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Brain Multiphysics |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.brain.2023.100089 |
| primary_location.id | doi:10.1016/j.brain.2023.100089 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210186738 |
| primary_location.source.issn | 2666-5220 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2666-5220 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Brain Multiphysics |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Brain Multiphysics |
| primary_location.landing_page_url | https://doi.org/10.1016/j.brain.2023.100089 |
| publication_date | 2023-12-23 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W3007493626, https://openalex.org/W6801650380, https://openalex.org/W572659940, https://openalex.org/W2081689918, https://openalex.org/W1978437325, https://openalex.org/W1992758695, https://openalex.org/W2609062415, https://openalex.org/W1549213315, https://openalex.org/W2022307232, https://openalex.org/W1813562443, https://openalex.org/W1501414201, https://openalex.org/W2909447679, https://openalex.org/W2063569651, https://openalex.org/W3004824486, https://openalex.org/W2146336531, https://openalex.org/W2742497781, https://openalex.org/W4308150318, https://openalex.org/W2964026052, https://openalex.org/W2750730801, https://openalex.org/W2609254407, https://openalex.org/W2321286752, https://openalex.org/W2526133071, https://openalex.org/W2593831960, https://openalex.org/W2745023142, https://openalex.org/W1948176961, https://openalex.org/W3153602765, https://openalex.org/W2771435422, https://openalex.org/W6785294956, https://openalex.org/W2155963684, https://openalex.org/W2121369614, https://openalex.org/W4230564401, https://openalex.org/W2963410151, https://openalex.org/W3110140721, https://openalex.org/W3119614548, https://openalex.org/W2770312000, https://openalex.org/W1978636950, https://openalex.org/W2022120753, https://openalex.org/W2152330055, https://openalex.org/W2084498863, https://openalex.org/W2106963900, https://openalex.org/W2900805597, https://openalex.org/W3199918151, https://openalex.org/W3098152775 |
| referenced_works_count | 43 |
| abstract_inverted_index.= | 199, 212 |
| abstract_inverted_index.a | 5, 80, 120, 138, 182, 202, 224, 242, 283, 337 |
| abstract_inverted_index.(p | 198, 211 |
| abstract_inverted_index.16 | 105 |
| abstract_inverted_index.25 | 101 |
| abstract_inverted_index.50 | 10 |
| abstract_inverted_index.In | 115 |
| abstract_inverted_index.To | 291 |
| abstract_inverted_index.We | 78, 192, 251, 313 |
| abstract_inverted_index.an | 188, 259 |
| abstract_inverted_index.at | 71 |
| abstract_inverted_index.be | 60, 336, 346, 366 |
| abstract_inverted_index.in | 62, 100, 150, 164, 205, 214, 289, 305, 317, 327, 341, 348, 355, 368 |
| abstract_inverted_index.is | 4, 295 |
| abstract_inverted_index.of | 91, 113, 147, 167, 173, 208, 246, 249, 262, 287, 330, 351, 358 |
| abstract_inverted_index.on | 187 |
| abstract_inverted_index.or | 36, 364 |
| abstract_inverted_index.to | 46, 107, 131, 144, 161, 217, 231, 271, 299, 362 |
| abstract_inverted_index.we | 118, 221 |
| abstract_inverted_index.7T, | 253 |
| abstract_inverted_index.MRI | 230, 256 |
| abstract_inverted_index.PVS | 155, 174, 197, 238, 304, 332 |
| abstract_inverted_index.The | 153 |
| abstract_inverted_index.UHF | 85, 229 |
| abstract_inverted_index.and | 1, 22, 42, 76, 89, 93, 104, 135, 156, 171, 201, 233, 237, 257, 267, 273, 276, 302, 308, 320, 333 |
| abstract_inverted_index.can | 365 |
| abstract_inverted_index.for | 87 |
| abstract_inverted_index.may | 16, 31, 59, 240, 335, 345 |
| abstract_inverted_index.not | 68 |
| abstract_inverted_index.our | 116, 292 |
| abstract_inverted_index.per | 176 |
| abstract_inverted_index.the | 26, 98, 151, 165, 206, 281, 296, 306, 328, 349, 359 |
| abstract_inverted_index.use | 137, 252 |
| abstract_inverted_index.Here | 220 |
| abstract_inverted_index.PVS, | 169 |
| abstract_inverted_index.PVS. | 321 |
| abstract_inverted_index.This | 343 |
| abstract_inverted_index.from | 33 |
| abstract_inverted_index.have | 222 |
| abstract_inverted_index.more | 195 |
| abstract_inverted_index.that | 239, 325 |
| abstract_inverted_index.this | 294 |
| abstract_inverted_index.tool | 124, 142, 344 |
| abstract_inverted_index.used | 160 |
| abstract_inverted_index.were | 159 |
| abstract_inverted_index.with | 18, 51 |
| abstract_inverted_index.(MRI) | 58 |
| abstract_inverted_index.(PVS) | 96, 279 |
| abstract_inverted_index.(UHF) | 54 |
| abstract_inverted_index.PVSs, | 134 |
| abstract_inverted_index.Space | 127 |
| abstract_inverted_index.These | 28, 322 |
| abstract_inverted_index.brain | 360 |
| abstract_inverted_index.cited | 285 |
| abstract_inverted_index.field | 53, 73, 255 |
| abstract_inverted_index.first | 297 |
| abstract_inverted_index.found | 193 |
| abstract_inverted_index.lower | 72 |
| abstract_inverted_index.masks | 158 |
| abstract_inverted_index.novel | 81, 225 |
| abstract_inverted_index.other | 356, 369 |
| abstract_inverted_index.space | 265 |
| abstract_inverted_index.study | 298 |
| abstract_inverted_index.using | 181 |
| abstract_inverted_index.which | 83, 227 |
| abstract_inverted_index.0.038) | 213 |
| abstract_inverted_index.called | 125 |
| abstract_inverted_index.detect | 132, 234, 310 |
| abstract_inverted_index.filter | 185 |
| abstract_inverted_index.highly | 284 |
| abstract_inverted_index.linked | 45, 186 |
| abstract_inverted_index.method | 82, 143 |
| abstract_inverted_index.neural | 19 |
| abstract_inverted_index.number | 166, 172, 207, 329 |
| abstract_inverted_index.people | 12 |
| abstract_inverted_index.region | 286 |
| abstract_inverted_index.result | 32 |
| abstract_inverted_index.second | 139 |
| abstract_inverted_index.spaces | 95, 278 |
| abstract_inverted_index.subtle | 352 |
| abstract_inverted_index.useful | 61, 347 |
| abstract_inverted_index.vessel | 157, 177, 269 |
| abstract_inverted_index.within | 25, 97, 280 |
| abstract_inverted_index.0.0307) | 200 |
| abstract_inverted_index.Hessian | 183 |
| abstract_inverted_index.between | 179 |
| abstract_inverted_index.broader | 37 |
| abstract_inverted_index.changes | 24, 30, 354 |
| abstract_inverted_index.complex | 6 |
| abstract_inverted_index.groups, | 180 |
| abstract_inverted_index.imaging | 57, 111 |
| abstract_inverted_index.million | 11 |
| abstract_inverted_index.outline | 79 |
| abstract_inverted_index.process | 226 |
| abstract_inverted_index.provide | 241 |
| abstract_inverted_index.regions | 357 |
| abstract_inverted_index.related | 361 |
| abstract_inverted_index.segment | 303 |
| abstract_inverted_index.seizure | 34 |
| abstract_inverted_index.uncover | 108 |
| abstract_inverted_index.vessels | 92, 210, 236, 275, 334 |
| abstract_inverted_index.(PVSSAS) | 130 |
| abstract_inverted_index.Epilepsy | 3 |
| abstract_inverted_index.Improved | 49 |
| abstract_inverted_index.Results: | 191 |
| abstract_inverted_index.activity | 35 |
| abstract_inverted_index.automate | 145 |
| abstract_inverted_index.compared | 216 |
| abstract_inverted_index.detected | 178 |
| abstract_inverted_index.disorder | 8 |
| abstract_inverted_index.employed | 258, 367 |
| abstract_inverted_index.epilepsy | 102, 363 |
| abstract_inverted_index.findings | 323 |
| abstract_inverted_index.increase | 204 |
| abstract_inverted_index.interest | 288 |
| abstract_inverted_index.magnetic | 55 |
| abstract_inverted_index.methods: | 77 |
| abstract_inverted_index.network, | 20 |
| abstract_inverted_index.network. | 190 |
| abstract_inverted_index.neuronal | 40 |
| abstract_inverted_index.optimize | 119 |
| abstract_inverted_index.overlaps | 175 |
| abstract_inverted_index.patients | 103, 215 |
| abstract_inverted_index.possible | 64, 109 |
| abstract_inverted_index.purpose: | 2 |
| abstract_inverted_index.quantify | 162, 232, 274 |
| abstract_inverted_index.seizures | 15 |
| abstract_inverted_index.suggests | 324 |
| abstract_inverted_index.thalamic | 29, 65, 133, 196, 209, 235, 311, 318, 331 |
| abstract_inverted_index.thalamus | 99, 307 |
| abstract_inverted_index.vascular | 23, 66, 148, 353 |
| abstract_inverted_index.vessels, | 168 |
| abstract_inverted_index.vessels. | 312 |
| abstract_inverted_index.Materials | 75 |
| abstract_inverted_index.Statement | 248 |
| abstract_inverted_index.affecting | 9 |
| abstract_inverted_index.analysis, | 117 |
| abstract_inverted_index.automated | 268 |
| abstract_inverted_index.biomarker | 245, 340 |
| abstract_inverted_index.controls, | 106 |
| abstract_inverted_index.controls. | 218 |
| abstract_inverted_index.correlate | 17 |
| abstract_inverted_index.detection | 88, 123, 146, 184, 350 |
| abstract_inverted_index.developed | 223 |
| abstract_inverted_index.drainage. | 48 |
| abstract_inverted_index.epilepsy. | 114, 247, 290, 342 |
| abstract_inverted_index.increases | 326 |
| abstract_inverted_index.involving | 39 |
| abstract_inverted_index.leverages | 84, 228 |
| abstract_inverted_index.otherwise | 69 |
| abstract_inverted_index.overlaps, | 170 |
| abstract_inverted_index.potential | 243, 338 |
| abstract_inverted_index.processes | 44 |
| abstract_inverted_index.resonance | 56 |
| abstract_inverted_index.resulting | 154 |
| abstract_inverted_index.thalamus, | 282 |
| abstract_inverted_index.thalamus. | 27, 152 |
| abstract_inverted_index.uncovered | 314 |
| abstract_inverted_index.visualize | 272, 301 |
| abstract_inverted_index.Background | 0 |
| abstract_inverted_index.Persistent | 14 |
| abstract_inverted_index.Ultra-high | 52 |
| abstract_inverted_index.biomarkers | 112 |
| abstract_inverted_index.detectable | 70, 315 |
| abstract_inverted_index.glymphatic | 47 |
| abstract_inverted_index.innovative | 260 |
| abstract_inverted_index.knowledge, | 293 |
| abstract_inverted_index.resolution | 50 |
| abstract_inverted_index.strengths. | 74 |
| abstract_inverted_index.structures | 149 |
| abstract_inverted_index.ultra-high | 254 |
| abstract_inverted_index.underlying | 110 |
| abstract_inverted_index.worldwide. | 13 |
| abstract_inverted_index.Conclusion: | 219 |
| abstract_inverted_index.alterations | 38 |
| abstract_inverted_index.combination | 261 |
| abstract_inverted_index.conditions. | 371 |
| abstract_inverted_index.differences | 163, 316 |
| abstract_inverted_index.identifying | 63 |
| abstract_inverted_index.significant | 203 |
| abstract_inverted_index.vasculature | 41, 319 |
| abstract_inverted_index.18-connected | 189 |
| abstract_inverted_index.Frangi-based | 122, 140 |
| abstract_inverted_index.MATLAB-based | 121 |
| abstract_inverted_index.Perivascular | 126 |
| abstract_inverted_index.Segmentation | 129 |
| abstract_inverted_index.additionally | 136 |
| abstract_inverted_index.neuroimaging | 86, 244, 339 |
| abstract_inverted_index.neurological | 7, 370 |
| abstract_inverted_index.perivascular | 94, 264, 277 |
| abstract_inverted_index.segmentation | 141, 266, 270 |
| abstract_inverted_index.Significance: | 250 |
| abstract_inverted_index.abnormalities | 67 |
| abstract_inverted_index.automatically | 309 |
| abstract_inverted_index.significantly | 194 |
| abstract_inverted_index.Semi-Automated | 128 |
| abstract_inverted_index.quantification | 90 |
| abstract_inverted_index.semi-automated | 263 |
| abstract_inverted_index.microstructural, | 21 |
| abstract_inverted_index.neuroinflammatory | 43 |
| abstract_inverted_index.semi-automatically | 300 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 96 |
| corresponding_author_ids | https://openalex.org/A5080975452 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 7 |
| corresponding_institution_ids | https://openalex.org/I98704320 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/3 |
| sustainable_development_goals[0].score | 0.6600000262260437 |
| sustainable_development_goals[0].display_name | Good health and well-being |
| citation_normalized_percentile.value | 0.64989319 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |