Segmentation of ADPKD Computed Tomography Images with Deep Learning Approach for Predicting Total Kidney Volume Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.3390/biomedicines13020263
Background: Total Kidney Volume (TKV) is widely used globally to predict the progressive loss of renal function in patients with Autosomal Dominant Polycystic Kidney Disease (ADPKD). Typically, TKV is calculated using Computed Tomography (CT) images by manually locating, delineating, and segmenting the ADPKD kidneys. However, manual localization and segmentation are tedious, time-consuming tasks and are prone to human error. Specifically, there is a lack of studies that focus on CT modality variation. Methods: In contrast, our work develops a step-by-step framework, which robustly handles both Non-enhanced Computed Tomography (NCCT) and Contrast-enhanced Computed Tomography (CCT) images, ensuring balanced sample utilization and consistent performance across modalities. To achieve this, Artificial Intelligence (AI)-enabled localization and segmentation models are proposed for estimating TKV, which is designed to work robustly on both NCCT and Contrast-Computed Tomography (CCT) images. These AI-based models incorporate various image preprocessing techniques, including dilation and global thresholding, combined with Deep Learning (DL) approaches such as the adapted Single Shot Detector (SSD), Inception V2, and DeepLab V3+. Results: The experimental results demonstrate that the proposed AI-based models outperform other DL architectures, achieving a mean Average Precision (mAP) of 95% for automatic localization, a mean Intersection over Union (mIoU) of 92% for segmentation, and a mean R2 score of 97% for TKV estimation. Conclusions: These results clearly indicate that the proposed AI-based models can robustly localize and segment ADPKD kidneys and estimate TKV using both NCCT and CCT images.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/biomedicines13020263
- https://www.mdpi.com/2227-9059/13/2/263/pdf?version=1737528132
- OA Status
- gold
- Cited By
- 1
- References
- 39
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4406706840
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4406706840Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/biomedicines13020263Digital Object Identifier
- Title
-
Segmentation of ADPKD Computed Tomography Images with Deep Learning Approach for Predicting Total Kidney VolumeWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-01-22Full publication date if available
- Authors
-
Ting‐Wen Sheng, Djeane Debora Onthoni, Pushpanjali Gupta, Tsong‐Hai Lee, Prasan Kumar SahooList of authors in order
- Landing page
-
https://doi.org/10.3390/biomedicines13020263Publisher landing page
- PDF URL
-
https://www.mdpi.com/2227-9059/13/2/263/pdf?version=1737528132Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2227-9059/13/2/263/pdf?version=1737528132Direct OA link when available
- Concepts
-
Artificial intelligence, Segmentation, Thresholding, Computer science, Image segmentation, Computer vision, Pattern recognition (psychology), Autosomal dominant polycystic kidney disease, Preprocessor, Medicine, Image (mathematics), Radiology, CystTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
39Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4406706840 |
|---|---|
| doi | https://doi.org/10.3390/biomedicines13020263 |
| ids.doi | https://doi.org/10.3390/biomedicines13020263 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/40002677 |
| ids.openalex | https://openalex.org/W4406706840 |
| fwci | 6.35848368 |
| type | article |
| title | Segmentation of ADPKD Computed Tomography Images with Deep Learning Approach for Predicting Total Kidney Volume |
| awards[0].id | https://openalex.org/G4608757752 |
| awards[0].funder_id | https://openalex.org/F4320313619 |
| awards[0].display_name | |
| awards[0].funder_award_id | CORPVVM0011 |
| awards[0].funder_display_name | Chang Gung Memorial Hospital |
| biblio.issue | 2 |
| biblio.volume | 13 |
| biblio.last_page | 263 |
| biblio.first_page | 263 |
| topics[0].id | https://openalex.org/T11412 |
| topics[0].field.id | https://openalex.org/fields/13 |
| topics[0].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[0].score | 0.9979000091552734 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1311 |
| topics[0].subfield.display_name | Genetics |
| topics[0].display_name | Genetic and Kidney Cyst Diseases |
| topics[1].id | https://openalex.org/T11885 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9860000014305115 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2741 |
| topics[1].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[1].display_name | MRI in cancer diagnosis |
| topics[2].id | https://openalex.org/T11174 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9828000068664551 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2735 |
| topics[2].subfield.display_name | Pediatrics, Perinatology and Child Health |
| topics[2].display_name | Pediatric Urology and Nephrology Studies |
| funders[0].id | https://openalex.org/F4320313619 |
| funders[0].ror | https://ror.org/02verss31 |
| funders[0].display_name | Chang Gung Memorial Hospital |
| is_xpac | False |
| apc_list.value | 2200 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2382 |
| apc_paid.value | 2200 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2382 |
| concepts[0].id | https://openalex.org/C154945302 |
| concepts[0].level | 1 |
| concepts[0].score | 0.7398248314857483 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[0].display_name | Artificial intelligence |
| concepts[1].id | https://openalex.org/C89600930 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7222422361373901 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[1].display_name | Segmentation |
| concepts[2].id | https://openalex.org/C191178318 |
| concepts[2].level | 3 |
| concepts[2].score | 0.608502984046936 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2256906 |
| concepts[2].display_name | Thresholding |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.5355707406997681 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C124504099 |
| concepts[4].level | 3 |
| concepts[4].score | 0.4359416365623474 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q56933 |
| concepts[4].display_name | Image segmentation |
| concepts[5].id | https://openalex.org/C31972630 |
| concepts[5].level | 1 |
| concepts[5].score | 0.43406158685684204 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[5].display_name | Computer vision |
| concepts[6].id | https://openalex.org/C153180895 |
| concepts[6].level | 2 |
| concepts[6].score | 0.42217472195625305 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[6].display_name | Pattern recognition (psychology) |
| concepts[7].id | https://openalex.org/C2776266639 |
| concepts[7].level | 3 |
| concepts[7].score | 0.42152485251426697 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2732398 |
| concepts[7].display_name | Autosomal dominant polycystic kidney disease |
| concepts[8].id | https://openalex.org/C34736171 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4207097589969635 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q918333 |
| concepts[8].display_name | Preprocessor |
| concepts[9].id | https://openalex.org/C71924100 |
| concepts[9].level | 0 |
| concepts[9].score | 0.1748615801334381 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[9].display_name | Medicine |
| concepts[10].id | https://openalex.org/C115961682 |
| concepts[10].level | 2 |
| concepts[10].score | 0.16578438878059387 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[10].display_name | Image (mathematics) |
| concepts[11].id | https://openalex.org/C126838900 |
| concepts[11].level | 1 |
| concepts[11].score | 0.155539870262146 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q77604 |
| concepts[11].display_name | Radiology |
| concepts[12].id | https://openalex.org/C2780597408 |
| concepts[12].level | 2 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q193211 |
| concepts[12].display_name | Cyst |
| keywords[0].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[0].score | 0.7398248314857483 |
| keywords[0].display_name | Artificial intelligence |
| keywords[1].id | https://openalex.org/keywords/segmentation |
| keywords[1].score | 0.7222422361373901 |
| keywords[1].display_name | Segmentation |
| keywords[2].id | https://openalex.org/keywords/thresholding |
| keywords[2].score | 0.608502984046936 |
| keywords[2].display_name | Thresholding |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.5355707406997681 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/image-segmentation |
| keywords[4].score | 0.4359416365623474 |
| keywords[4].display_name | Image segmentation |
| keywords[5].id | https://openalex.org/keywords/computer-vision |
| keywords[5].score | 0.43406158685684204 |
| keywords[5].display_name | Computer vision |
| keywords[6].id | https://openalex.org/keywords/pattern-recognition |
| keywords[6].score | 0.42217472195625305 |
| keywords[6].display_name | Pattern recognition (psychology) |
| keywords[7].id | https://openalex.org/keywords/autosomal-dominant-polycystic-kidney-disease |
| keywords[7].score | 0.42152485251426697 |
| keywords[7].display_name | Autosomal dominant polycystic kidney disease |
| keywords[8].id | https://openalex.org/keywords/preprocessor |
| keywords[8].score | 0.4207097589969635 |
| keywords[8].display_name | Preprocessor |
| keywords[9].id | https://openalex.org/keywords/medicine |
| keywords[9].score | 0.1748615801334381 |
| keywords[9].display_name | Medicine |
| keywords[10].id | https://openalex.org/keywords/image |
| keywords[10].score | 0.16578438878059387 |
| keywords[10].display_name | Image (mathematics) |
| keywords[11].id | https://openalex.org/keywords/radiology |
| keywords[11].score | 0.155539870262146 |
| keywords[11].display_name | Radiology |
| language | en |
| locations[0].id | doi:10.3390/biomedicines13020263 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2737005842 |
| locations[0].source.issn | 2227-9059 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2227-9059 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Biomedicines |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2227-9059/13/2/263/pdf?version=1737528132 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Biomedicines |
| locations[0].landing_page_url | https://doi.org/10.3390/biomedicines13020263 |
| locations[1].id | pmid:40002677 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Biomedicines |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/40002677 |
| locations[2].id | pmh:oai:doaj.org/article:3b2a0a74d5c14d1796d44f690955d12d |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Biomedicines, Vol 13, Iss 2, p 263 (2025) |
| locations[2].landing_page_url | https://doaj.org/article/3b2a0a74d5c14d1796d44f690955d12d |
| locations[3].id | pmh:oai:pubmedcentral.nih.gov:11852143 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S2764455111 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | PubMed Central |
| locations[3].source.host_organization | https://openalex.org/I1299303238 |
| locations[3].source.host_organization_name | National Institutes of Health |
| locations[3].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Biomedicines |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/11852143 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5075848180 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-9645-3906 |
| authorships[0].author.display_name | Ting‐Wen Sheng |
| authorships[0].countries | TW |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I3020100970 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Medical Imaging and Intervention, New Taipei Municipal TuCheng Hospital, Chang Gung Medical Foundation, New Taipei City 236017, Taiwan |
| authorships[0].institutions[0].id | https://openalex.org/I3020100970 |
| authorships[0].institutions[0].ror | https://ror.org/02verss31 |
| authorships[0].institutions[0].type | healthcare |
| authorships[0].institutions[0].lineage | https://openalex.org/I3020100970 |
| authorships[0].institutions[0].country_code | TW |
| authorships[0].institutions[0].display_name | Chang Gung Memorial Hospital |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ting-Wen Sheng |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Medical Imaging and Intervention, New Taipei Municipal TuCheng Hospital, Chang Gung Medical Foundation, New Taipei City 236017, Taiwan |
| authorships[1].author.id | https://openalex.org/A5010768539 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-6990-9456 |
| authorships[1].author.display_name | Djeane Debora Onthoni |
| authorships[1].countries | TW |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I173093425 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Computer Science and Information Engineering, Chang Gung University, Guishan, Taoyuan 33302, Taiwan |
| authorships[1].institutions[0].id | https://openalex.org/I173093425 |
| authorships[1].institutions[0].ror | https://ror.org/00d80zx46 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I173093425 |
| authorships[1].institutions[0].country_code | TW |
| authorships[1].institutions[0].display_name | Chang Gung University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Djeane Debora Onthoni |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Computer Science and Information Engineering, Chang Gung University, Guishan, Taoyuan 33302, Taiwan |
| authorships[2].author.id | https://openalex.org/A5068028815 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-6077-9701 |
| authorships[2].author.display_name | Pushpanjali Gupta |
| authorships[2].countries | TW |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I173093425 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Computer Science and Information Engineering, Chang Gung University, Guishan, Taoyuan 33302, Taiwan |
| authorships[2].institutions[0].id | https://openalex.org/I173093425 |
| authorships[2].institutions[0].ror | https://ror.org/00d80zx46 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I173093425 |
| authorships[2].institutions[0].country_code | TW |
| authorships[2].institutions[0].display_name | Chang Gung University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Pushpanjali Gupta |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Computer Science and Information Engineering, Chang Gung University, Guishan, Taoyuan 33302, Taiwan |
| authorships[3].author.id | https://openalex.org/A5010968515 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-3935-5963 |
| authorships[3].author.display_name | Tsong‐Hai Lee |
| authorships[3].countries | TW |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I3020100970 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Neurology, Chang Gung Memorial Hospital, Linkou Medical Center, Guishan, Taoyuan 333423, Taiwan |
| authorships[3].institutions[0].id | https://openalex.org/I3020100970 |
| authorships[3].institutions[0].ror | https://ror.org/02verss31 |
| authorships[3].institutions[0].type | healthcare |
| authorships[3].institutions[0].lineage | https://openalex.org/I3020100970 |
| authorships[3].institutions[0].country_code | TW |
| authorships[3].institutions[0].display_name | Chang Gung Memorial Hospital |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Tsong-Hai Lee |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Neurology, Chang Gung Memorial Hospital, Linkou Medical Center, Guishan, Taoyuan 333423, Taiwan |
| authorships[4].author.id | https://openalex.org/A5043838453 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-3496-1195 |
| authorships[4].author.display_name | Prasan Kumar Sahoo |
| authorships[4].countries | TW |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I3020100970 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Neurology, Chang Gung Memorial Hospital, Linkou Medical Center, Guishan, Taoyuan 333423, Taiwan |
| authorships[4].affiliations[1].institution_ids | https://openalex.org/I173093425 |
| authorships[4].affiliations[1].raw_affiliation_string | Department of Computer Science and Information Engineering, Chang Gung University, Guishan, Taoyuan 33302, Taiwan |
| authorships[4].institutions[0].id | https://openalex.org/I3020100970 |
| authorships[4].institutions[0].ror | https://ror.org/02verss31 |
| authorships[4].institutions[0].type | healthcare |
| authorships[4].institutions[0].lineage | https://openalex.org/I3020100970 |
| authorships[4].institutions[0].country_code | TW |
| authorships[4].institutions[0].display_name | Chang Gung Memorial Hospital |
| authorships[4].institutions[1].id | https://openalex.org/I173093425 |
| authorships[4].institutions[1].ror | https://ror.org/00d80zx46 |
| authorships[4].institutions[1].type | education |
| authorships[4].institutions[1].lineage | https://openalex.org/I173093425 |
| authorships[4].institutions[1].country_code | TW |
| authorships[4].institutions[1].display_name | Chang Gung University |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Prasan Kumar Sahoo |
| authorships[4].is_corresponding | True |
| authorships[4].raw_affiliation_strings | Department of Computer Science and Information Engineering, Chang Gung University, Guishan, Taoyuan 33302, Taiwan, Department of Neurology, Chang Gung Memorial Hospital, Linkou Medical Center, Guishan, Taoyuan 333423, Taiwan |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2227-9059/13/2/263/pdf?version=1737528132 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Segmentation of ADPKD Computed Tomography Images with Deep Learning Approach for Predicting Total Kidney Volume |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11412 |
| primary_topic.field.id | https://openalex.org/fields/13 |
| primary_topic.field.display_name | Biochemistry, Genetics and Molecular Biology |
| primary_topic.score | 0.9979000091552734 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1311 |
| primary_topic.subfield.display_name | Genetics |
| primary_topic.display_name | Genetic and Kidney Cyst Diseases |
| related_works | https://openalex.org/W2138983844, https://openalex.org/W1968965685, https://openalex.org/W2012792772, https://openalex.org/W2356573839, https://openalex.org/W2111883783, https://openalex.org/W2009028679, https://openalex.org/W2357424838, https://openalex.org/W2327601824, https://openalex.org/W4237142086, https://openalex.org/W2161102362 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 4 |
| best_oa_location.id | doi:10.3390/biomedicines13020263 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2737005842 |
| best_oa_location.source.issn | 2227-9059 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2227-9059 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Biomedicines |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2227-9059/13/2/263/pdf?version=1737528132 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Biomedicines |
| best_oa_location.landing_page_url | https://doi.org/10.3390/biomedicines13020263 |
| primary_location.id | doi:10.3390/biomedicines13020263 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2737005842 |
| primary_location.source.issn | 2227-9059 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2227-9059 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Biomedicines |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2227-9059/13/2/263/pdf?version=1737528132 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Biomedicines |
| primary_location.landing_page_url | https://doi.org/10.3390/biomedicines13020263 |
| publication_date | 2025-01-22 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W3005957464, https://openalex.org/W2203078370, https://openalex.org/W2517764374, https://openalex.org/W2592572788, https://openalex.org/W2076705627, https://openalex.org/W2161971256, https://openalex.org/W2049803723, https://openalex.org/W2015427245, https://openalex.org/W2101067234, https://openalex.org/W2619925024, https://openalex.org/W1988177277, https://openalex.org/W2307196842, https://openalex.org/W3191409400, https://openalex.org/W4385948864, https://openalex.org/W2783554736, https://openalex.org/W2613326680, https://openalex.org/W2735975467, https://openalex.org/W2619004901, https://openalex.org/W3141480068, https://openalex.org/W2891913215, https://openalex.org/W2825313853, https://openalex.org/W2965858371, https://openalex.org/W3040599202, https://openalex.org/W4378377498, https://openalex.org/W3087304515, https://openalex.org/W4378803909, https://openalex.org/W4399808443, https://openalex.org/W4389616949, https://openalex.org/W4368283114, https://openalex.org/W3117588795, https://openalex.org/W2017607294, https://openalex.org/W2065429801, https://openalex.org/W2964309882, https://openalex.org/W4394932845, https://openalex.org/W1665214252, https://openalex.org/W2978631110, https://openalex.org/W3010349374, https://openalex.org/W2995592124, https://openalex.org/W3091886168 |
| referenced_works_count | 39 |
| abstract_inverted_index.a | 62, 78, 180, 190, 201 |
| abstract_inverted_index.CT | 69 |
| abstract_inverted_index.DL | 177 |
| abstract_inverted_index.In | 73 |
| abstract_inverted_index.R2 | 203 |
| abstract_inverted_index.To | 104 |
| abstract_inverted_index.as | 153 |
| abstract_inverted_index.by | 35 |
| abstract_inverted_index.in | 17 |
| abstract_inverted_index.is | 5, 28, 61, 120 |
| abstract_inverted_index.of | 14, 64, 185, 196, 205 |
| abstract_inverted_index.on | 68, 125 |
| abstract_inverted_index.to | 9, 56, 122 |
| abstract_inverted_index.92% | 197 |
| abstract_inverted_index.95% | 186 |
| abstract_inverted_index.97% | 206 |
| abstract_inverted_index.CCT | 234 |
| abstract_inverted_index.TKV | 27, 208, 229 |
| abstract_inverted_index.The | 166 |
| abstract_inverted_index.V2, | 161 |
| abstract_inverted_index.and | 39, 47, 53, 89, 99, 111, 128, 143, 162, 200, 223, 227, 233 |
| abstract_inverted_index.are | 49, 54, 114 |
| abstract_inverted_index.can | 220 |
| abstract_inverted_index.for | 116, 187, 198, 207 |
| abstract_inverted_index.our | 75 |
| abstract_inverted_index.the | 11, 41, 154, 171, 216 |
| abstract_inverted_index.(CT) | 33 |
| abstract_inverted_index.(DL) | 150 |
| abstract_inverted_index.Deep | 148 |
| abstract_inverted_index.NCCT | 127, 232 |
| abstract_inverted_index.Shot | 157 |
| abstract_inverted_index.TKV, | 118 |
| abstract_inverted_index.V3+. | 164 |
| abstract_inverted_index.both | 84, 126, 231 |
| abstract_inverted_index.lack | 63 |
| abstract_inverted_index.loss | 13 |
| abstract_inverted_index.mean | 181, 191, 202 |
| abstract_inverted_index.over | 193 |
| abstract_inverted_index.such | 152 |
| abstract_inverted_index.that | 66, 170, 215 |
| abstract_inverted_index.used | 7 |
| abstract_inverted_index.with | 19, 147 |
| abstract_inverted_index.work | 76, 123 |
| abstract_inverted_index.(CCT) | 93, 131 |
| abstract_inverted_index.(TKV) | 4 |
| abstract_inverted_index.(mAP) | 184 |
| abstract_inverted_index.ADPKD | 42, 225 |
| abstract_inverted_index.These | 133, 211 |
| abstract_inverted_index.Total | 1 |
| abstract_inverted_index.Union | 194 |
| abstract_inverted_index.focus | 67 |
| abstract_inverted_index.human | 57 |
| abstract_inverted_index.image | 138 |
| abstract_inverted_index.other | 176 |
| abstract_inverted_index.prone | 55 |
| abstract_inverted_index.renal | 15 |
| abstract_inverted_index.score | 204 |
| abstract_inverted_index.tasks | 52 |
| abstract_inverted_index.there | 60 |
| abstract_inverted_index.this, | 106 |
| abstract_inverted_index.using | 30, 230 |
| abstract_inverted_index.which | 81, 119 |
| abstract_inverted_index.(NCCT) | 88 |
| abstract_inverted_index.(SSD), | 159 |
| abstract_inverted_index.(mIoU) | 195 |
| abstract_inverted_index.Kidney | 2, 23 |
| abstract_inverted_index.Single | 156 |
| abstract_inverted_index.Volume | 3 |
| abstract_inverted_index.across | 102 |
| abstract_inverted_index.error. | 58 |
| abstract_inverted_index.global | 144 |
| abstract_inverted_index.images | 34 |
| abstract_inverted_index.manual | 45 |
| abstract_inverted_index.models | 113, 135, 174, 219 |
| abstract_inverted_index.sample | 97 |
| abstract_inverted_index.widely | 6 |
| abstract_inverted_index.Average | 182 |
| abstract_inverted_index.DeepLab | 163 |
| abstract_inverted_index.Disease | 24 |
| abstract_inverted_index.achieve | 105 |
| abstract_inverted_index.adapted | 155 |
| abstract_inverted_index.clearly | 213 |
| abstract_inverted_index.handles | 83 |
| abstract_inverted_index.images, | 94 |
| abstract_inverted_index.images. | 132, 235 |
| abstract_inverted_index.kidneys | 226 |
| abstract_inverted_index.predict | 10 |
| abstract_inverted_index.results | 168, 212 |
| abstract_inverted_index.segment | 224 |
| abstract_inverted_index.studies | 65 |
| abstract_inverted_index.various | 137 |
| abstract_inverted_index.(ADPKD). | 25 |
| abstract_inverted_index.AI-based | 134, 173, 218 |
| abstract_inverted_index.Computed | 31, 86, 91 |
| abstract_inverted_index.Detector | 158 |
| abstract_inverted_index.Dominant | 21 |
| abstract_inverted_index.However, | 44 |
| abstract_inverted_index.Learning | 149 |
| abstract_inverted_index.Methods: | 72 |
| abstract_inverted_index.Results: | 165 |
| abstract_inverted_index.balanced | 96 |
| abstract_inverted_index.combined | 146 |
| abstract_inverted_index.designed | 121 |
| abstract_inverted_index.develops | 77 |
| abstract_inverted_index.dilation | 142 |
| abstract_inverted_index.ensuring | 95 |
| abstract_inverted_index.estimate | 228 |
| abstract_inverted_index.function | 16 |
| abstract_inverted_index.globally | 8 |
| abstract_inverted_index.indicate | 214 |
| abstract_inverted_index.kidneys. | 43 |
| abstract_inverted_index.localize | 222 |
| abstract_inverted_index.manually | 36 |
| abstract_inverted_index.modality | 70 |
| abstract_inverted_index.patients | 18 |
| abstract_inverted_index.proposed | 115, 172, 217 |
| abstract_inverted_index.robustly | 82, 124, 221 |
| abstract_inverted_index.tedious, | 50 |
| abstract_inverted_index.Autosomal | 20 |
| abstract_inverted_index.Inception | 160 |
| abstract_inverted_index.Precision | 183 |
| abstract_inverted_index.achieving | 179 |
| abstract_inverted_index.automatic | 188 |
| abstract_inverted_index.contrast, | 74 |
| abstract_inverted_index.including | 141 |
| abstract_inverted_index.locating, | 37 |
| abstract_inverted_index.Artificial | 107 |
| abstract_inverted_index.Polycystic | 22 |
| abstract_inverted_index.Tomography | 32, 87, 92, 130 |
| abstract_inverted_index.Typically, | 26 |
| abstract_inverted_index.approaches | 151 |
| abstract_inverted_index.calculated | 29 |
| abstract_inverted_index.consistent | 100 |
| abstract_inverted_index.estimating | 117 |
| abstract_inverted_index.framework, | 80 |
| abstract_inverted_index.outperform | 175 |
| abstract_inverted_index.segmenting | 40 |
| abstract_inverted_index.variation. | 71 |
| abstract_inverted_index.Background: | 0 |
| abstract_inverted_index.demonstrate | 169 |
| abstract_inverted_index.estimation. | 209 |
| abstract_inverted_index.incorporate | 136 |
| abstract_inverted_index.modalities. | 103 |
| abstract_inverted_index.performance | 101 |
| abstract_inverted_index.progressive | 12 |
| abstract_inverted_index.techniques, | 140 |
| abstract_inverted_index.utilization | 98 |
| abstract_inverted_index.(AI)-enabled | 109 |
| abstract_inverted_index.Conclusions: | 210 |
| abstract_inverted_index.Intelligence | 108 |
| abstract_inverted_index.Intersection | 192 |
| abstract_inverted_index.Non-enhanced | 85 |
| abstract_inverted_index.delineating, | 38 |
| abstract_inverted_index.experimental | 167 |
| abstract_inverted_index.localization | 46, 110 |
| abstract_inverted_index.segmentation | 48, 112 |
| abstract_inverted_index.step-by-step | 79 |
| abstract_inverted_index.Specifically, | 59 |
| abstract_inverted_index.localization, | 189 |
| abstract_inverted_index.preprocessing | 139 |
| abstract_inverted_index.segmentation, | 199 |
| abstract_inverted_index.thresholding, | 145 |
| abstract_inverted_index.architectures, | 178 |
| abstract_inverted_index.time-consuming | 51 |
| abstract_inverted_index.Contrast-Computed | 129 |
| abstract_inverted_index.Contrast-enhanced | 90 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| corresponding_author_ids | https://openalex.org/A5043838453 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| corresponding_institution_ids | https://openalex.org/I173093425, https://openalex.org/I3020100970 |
| citation_normalized_percentile.value | 0.84967795 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |