Segmentation of Dashboard Screen Images: Preparation of Inputs for Object-based Metrics of UI Quality Article Swipe
YOU?
·
· 2019
· Open Access
·
· DOI: https://doi.org/10.5220/0007312301990207
Using object-based metrics to analyze design aspects of user interfaces (UI) is a suitable approach for the quantitative evaluation of the visual quality of user interfaces. Balance or Symmetry are examples of such metrics. On the other hand, we need to deal with the problem of a detection of objects within a user interface screen which represent the inputs for the object-based metrics. Today’s user interfaces (e. g., dashboards) are complex. They consist of several color layers, and it is complicated to segment them by well-known page segmentation methods which are usually used for the segmentation of printed documents. We also need to consider the subjective perception of users and principles of objects grouping (as Gestalt laws). Users usually group simple objects (graphical elements and shapes) into coherent visually dominant objects. We analyzed the experience of 251 users manually segmenting dashboard screens and designed a novel method for the automatic segmentation of dashboard screen images. The method initially focuses on the reduction of image colors which represents image layers. Then, it detects the primitives which makes a screen layout. Finally, the method processes the screen layout using the combination of the top-down and bottom-up segmentation strategy and detects visually dominant regions.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.5220/0007312301990207
- OA Status
- gold
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2921102808
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2921102808Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.5220/0007312301990207Digital Object Identifier
- Title
-
Segmentation of Dashboard Screen Images: Preparation of Inputs for Object-based Metrics of UI QualityWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2019Year of publication
- Publication date
-
2019-01-01Full publication date if available
- Authors
-
Jiří Hynek, Tomáš HruškaList of authors in order
- Landing page
-
https://doi.org/10.5220/0007312301990207Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.5220/0007312301990207Direct OA link when available
- Concepts
-
Computer science, Dashboard, Segmentation, Quality (philosophy), Object (grammar), Computer vision, Artificial intelligence, Image segmentation, Computer graphics (images), Information retrieval, Pattern recognition (psychology), Database, Philosophy, EpistemologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2019: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2921102808 |
|---|---|
| doi | https://doi.org/10.5220/0007312301990207 |
| ids.doi | https://doi.org/10.5220/0007312301990207 |
| ids.mag | 2921102808 |
| ids.openalex | https://openalex.org/W2921102808 |
| fwci | 0.21955896 |
| type | article |
| title | Segmentation of Dashboard Screen Images: Preparation of Inputs for Object-based Metrics of UI Quality |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 207 |
| biblio.first_page | 199 |
| topics[0].id | https://openalex.org/T12111 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9919999837875366 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2209 |
| topics[0].subfield.display_name | Industrial and Manufacturing Engineering |
| topics[0].display_name | Industrial Vision Systems and Defect Detection |
| topics[1].id | https://openalex.org/T11666 |
| topics[1].field.id | https://openalex.org/fields/31 |
| topics[1].field.display_name | Physics and Astronomy |
| topics[1].score | 0.9830999970436096 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3107 |
| topics[1].subfield.display_name | Atomic and Molecular Physics, and Optics |
| topics[1].display_name | Color Science and Applications |
| topics[2].id | https://openalex.org/T11605 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9672999978065491 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Visual Attention and Saliency Detection |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7715185284614563 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C33499554 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7497435808181763 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1417134 |
| concepts[1].display_name | Dashboard |
| concepts[2].id | https://openalex.org/C89600930 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6454731225967407 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[2].display_name | Segmentation |
| concepts[3].id | https://openalex.org/C2779530757 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6054072380065918 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1207505 |
| concepts[3].display_name | Quality (philosophy) |
| concepts[4].id | https://openalex.org/C2781238097 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5883277058601379 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q175026 |
| concepts[4].display_name | Object (grammar) |
| concepts[5].id | https://openalex.org/C31972630 |
| concepts[5].level | 1 |
| concepts[5].score | 0.5826053619384766 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[5].display_name | Computer vision |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.5582926273345947 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C124504099 |
| concepts[7].level | 3 |
| concepts[7].score | 0.5172644257545471 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q56933 |
| concepts[7].display_name | Image segmentation |
| concepts[8].id | https://openalex.org/C121684516 |
| concepts[8].level | 1 |
| concepts[8].score | 0.44696709513664246 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7600677 |
| concepts[8].display_name | Computer graphics (images) |
| concepts[9].id | https://openalex.org/C23123220 |
| concepts[9].level | 1 |
| concepts[9].score | 0.3526987135410309 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q816826 |
| concepts[9].display_name | Information retrieval |
| concepts[10].id | https://openalex.org/C153180895 |
| concepts[10].level | 2 |
| concepts[10].score | 0.34940481185913086 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[10].display_name | Pattern recognition (psychology) |
| concepts[11].id | https://openalex.org/C77088390 |
| concepts[11].level | 1 |
| concepts[11].score | 0.2057647705078125 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q8513 |
| concepts[11].display_name | Database |
| concepts[12].id | https://openalex.org/C138885662 |
| concepts[12].level | 0 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[12].display_name | Philosophy |
| concepts[13].id | https://openalex.org/C111472728 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q9471 |
| concepts[13].display_name | Epistemology |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7715185284614563 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/dashboard |
| keywords[1].score | 0.7497435808181763 |
| keywords[1].display_name | Dashboard |
| keywords[2].id | https://openalex.org/keywords/segmentation |
| keywords[2].score | 0.6454731225967407 |
| keywords[2].display_name | Segmentation |
| keywords[3].id | https://openalex.org/keywords/quality |
| keywords[3].score | 0.6054072380065918 |
| keywords[3].display_name | Quality (philosophy) |
| keywords[4].id | https://openalex.org/keywords/object |
| keywords[4].score | 0.5883277058601379 |
| keywords[4].display_name | Object (grammar) |
| keywords[5].id | https://openalex.org/keywords/computer-vision |
| keywords[5].score | 0.5826053619384766 |
| keywords[5].display_name | Computer vision |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.5582926273345947 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/image-segmentation |
| keywords[7].score | 0.5172644257545471 |
| keywords[7].display_name | Image segmentation |
| keywords[8].id | https://openalex.org/keywords/computer-graphics |
| keywords[8].score | 0.44696709513664246 |
| keywords[8].display_name | Computer graphics (images) |
| keywords[9].id | https://openalex.org/keywords/information-retrieval |
| keywords[9].score | 0.3526987135410309 |
| keywords[9].display_name | Information retrieval |
| keywords[10].id | https://openalex.org/keywords/pattern-recognition |
| keywords[10].score | 0.34940481185913086 |
| keywords[10].display_name | Pattern recognition (psychology) |
| keywords[11].id | https://openalex.org/keywords/database |
| keywords[11].score | 0.2057647705078125 |
| keywords[11].display_name | Database |
| language | en |
| locations[0].id | doi:10.5220/0007312301990207 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Proceedings of the 14th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications |
| locations[0].landing_page_url | https://doi.org/10.5220/0007312301990207 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5030561127 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-7292-6094 |
| authorships[0].author.display_name | Jiří Hynek |
| authorships[0].countries | CZ |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I60587646 |
| authorships[0].affiliations[0].raw_affiliation_string | Brno University of Technology, Faculty of Information Technology, IT4Innovations Centre of Excellence, Božetěchova 1/2, Brno and Czech Republic, --- Select a Country --- |
| authorships[0].institutions[0].id | https://openalex.org/I60587646 |
| authorships[0].institutions[0].ror | https://ror.org/03613d656 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I60587646 |
| authorships[0].institutions[0].country_code | CZ |
| authorships[0].institutions[0].display_name | Brno University of Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jiří Hynek |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Brno University of Technology, Faculty of Information Technology, IT4Innovations Centre of Excellence, Božetěchova 1/2, Brno and Czech Republic, --- Select a Country --- |
| authorships[1].author.id | https://openalex.org/A5036486690 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-5454-6592 |
| authorships[1].author.display_name | Tomáš Hruška |
| authorships[1].countries | CZ |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I60587646 |
| authorships[1].affiliations[0].raw_affiliation_string | Brno University of Technology, Faculty of Information Technology, IT4Innovations Centre of Excellence, Božetěchova 1/2, Brno and Czech Republic, --- Select a Country --- |
| authorships[1].institutions[0].id | https://openalex.org/I60587646 |
| authorships[1].institutions[0].ror | https://ror.org/03613d656 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I60587646 |
| authorships[1].institutions[0].country_code | CZ |
| authorships[1].institutions[0].display_name | Brno University of Technology |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Tomáš Hruška |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Brno University of Technology, Faculty of Information Technology, IT4Innovations Centre of Excellence, Božetěchova 1/2, Brno and Czech Republic, --- Select a Country --- |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.5220/0007312301990207 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Segmentation of Dashboard Screen Images: Preparation of Inputs for Object-based Metrics of UI Quality |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12111 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9919999837875366 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2209 |
| primary_topic.subfield.display_name | Industrial and Manufacturing Engineering |
| primary_topic.display_name | Industrial Vision Systems and Defect Detection |
| related_works | https://openalex.org/W2607236244, https://openalex.org/W2382083831, https://openalex.org/W4386891374, https://openalex.org/W2169792944, https://openalex.org/W4292603292, https://openalex.org/W2594203497, https://openalex.org/W3048913176, https://openalex.org/W4282830003, https://openalex.org/W2947439131, https://openalex.org/W1522196789 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2019 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.5220/0007312301990207 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | proceedings-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Proceedings of the 14th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications |
| best_oa_location.landing_page_url | https://doi.org/10.5220/0007312301990207 |
| primary_location.id | doi:10.5220/0007312301990207 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Proceedings of the 14th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications |
| primary_location.landing_page_url | https://doi.org/10.5220/0007312301990207 |
| publication_date | 2019-01-01 |
| publication_year | 2019 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 12, 46, 51, 144, 176 |
| abstract_inverted_index.On | 34 |
| abstract_inverted_index.We | 99, 131 |
| abstract_inverted_index.by | 84 |
| abstract_inverted_index.is | 11, 79 |
| abstract_inverted_index.it | 78, 170 |
| abstract_inverted_index.of | 7, 19, 23, 31, 45, 48, 73, 96, 107, 111, 135, 151, 162, 189 |
| abstract_inverted_index.on | 159 |
| abstract_inverted_index.or | 27 |
| abstract_inverted_index.to | 3, 40, 81, 102 |
| abstract_inverted_index.we | 38 |
| abstract_inverted_index.(as | 114 |
| abstract_inverted_index.(e. | 66 |
| abstract_inverted_index.251 | 136 |
| abstract_inverted_index.The | 155 |
| abstract_inverted_index.and | 77, 109, 124, 142, 192, 196 |
| abstract_inverted_index.are | 29, 69, 90 |
| abstract_inverted_index.for | 15, 59, 93, 147 |
| abstract_inverted_index.g., | 67 |
| abstract_inverted_index.the | 16, 20, 35, 43, 57, 60, 94, 104, 133, 148, 160, 172, 180, 183, 187, 190 |
| abstract_inverted_index.(UI) | 10 |
| abstract_inverted_index.They | 71 |
| abstract_inverted_index.also | 100 |
| abstract_inverted_index.deal | 41 |
| abstract_inverted_index.into | 126 |
| abstract_inverted_index.need | 39, 101 |
| abstract_inverted_index.page | 86 |
| abstract_inverted_index.such | 32 |
| abstract_inverted_index.them | 83 |
| abstract_inverted_index.used | 92 |
| abstract_inverted_index.user | 8, 24, 52, 64 |
| abstract_inverted_index.with | 42 |
| abstract_inverted_index.Then, | 169 |
| abstract_inverted_index.Users | 117 |
| abstract_inverted_index.Using | 0 |
| abstract_inverted_index.color | 75 |
| abstract_inverted_index.group | 119 |
| abstract_inverted_index.hand, | 37 |
| abstract_inverted_index.image | 163, 167 |
| abstract_inverted_index.makes | 175 |
| abstract_inverted_index.novel | 145 |
| abstract_inverted_index.other | 36 |
| abstract_inverted_index.users | 108, 137 |
| abstract_inverted_index.using | 186 |
| abstract_inverted_index.which | 55, 89, 165, 174 |
| abstract_inverted_index.colors | 164 |
| abstract_inverted_index.design | 5 |
| abstract_inverted_index.inputs | 58 |
| abstract_inverted_index.laws). | 116 |
| abstract_inverted_index.layout | 185 |
| abstract_inverted_index.method | 146, 156, 181 |
| abstract_inverted_index.screen | 54, 153, 177, 184 |
| abstract_inverted_index.simple | 120 |
| abstract_inverted_index.visual | 21 |
| abstract_inverted_index.within | 50 |
| abstract_inverted_index.Balance | 26 |
| abstract_inverted_index.Gestalt | 115 |
| abstract_inverted_index.analyze | 4 |
| abstract_inverted_index.aspects | 6 |
| abstract_inverted_index.consist | 72 |
| abstract_inverted_index.detects | 171, 197 |
| abstract_inverted_index.focuses | 158 |
| abstract_inverted_index.images. | 154 |
| abstract_inverted_index.layers, | 76 |
| abstract_inverted_index.layers. | 168 |
| abstract_inverted_index.layout. | 178 |
| abstract_inverted_index.methods | 88 |
| abstract_inverted_index.metrics | 2 |
| abstract_inverted_index.objects | 49, 112, 121 |
| abstract_inverted_index.printed | 97 |
| abstract_inverted_index.problem | 44 |
| abstract_inverted_index.quality | 22 |
| abstract_inverted_index.screens | 141 |
| abstract_inverted_index.segment | 82 |
| abstract_inverted_index.several | 74 |
| abstract_inverted_index.shapes) | 125 |
| abstract_inverted_index.usually | 91, 118 |
| abstract_inverted_index.Finally, | 179 |
| abstract_inverted_index.Symmetry | 28 |
| abstract_inverted_index.analyzed | 132 |
| abstract_inverted_index.approach | 14 |
| abstract_inverted_index.coherent | 127 |
| abstract_inverted_index.complex. | 70 |
| abstract_inverted_index.consider | 103 |
| abstract_inverted_index.designed | 143 |
| abstract_inverted_index.dominant | 129, 199 |
| abstract_inverted_index.elements | 123 |
| abstract_inverted_index.examples | 30 |
| abstract_inverted_index.grouping | 113 |
| abstract_inverted_index.manually | 138 |
| abstract_inverted_index.metrics. | 33, 62 |
| abstract_inverted_index.objects. | 130 |
| abstract_inverted_index.regions. | 200 |
| abstract_inverted_index.strategy | 195 |
| abstract_inverted_index.suitable | 13 |
| abstract_inverted_index.top-down | 191 |
| abstract_inverted_index.visually | 128, 198 |
| abstract_inverted_index.Today’s | 63 |
| abstract_inverted_index.automatic | 149 |
| abstract_inverted_index.bottom-up | 193 |
| abstract_inverted_index.dashboard | 140, 152 |
| abstract_inverted_index.detection | 47 |
| abstract_inverted_index.initially | 157 |
| abstract_inverted_index.interface | 53 |
| abstract_inverted_index.processes | 182 |
| abstract_inverted_index.reduction | 161 |
| abstract_inverted_index.represent | 56 |
| abstract_inverted_index.(graphical | 122 |
| abstract_inverted_index.documents. | 98 |
| abstract_inverted_index.evaluation | 18 |
| abstract_inverted_index.experience | 134 |
| abstract_inverted_index.interfaces | 9, 65 |
| abstract_inverted_index.perception | 106 |
| abstract_inverted_index.primitives | 173 |
| abstract_inverted_index.principles | 110 |
| abstract_inverted_index.represents | 166 |
| abstract_inverted_index.segmenting | 139 |
| abstract_inverted_index.subjective | 105 |
| abstract_inverted_index.well-known | 85 |
| abstract_inverted_index.combination | 188 |
| abstract_inverted_index.complicated | 80 |
| abstract_inverted_index.dashboards) | 68 |
| abstract_inverted_index.interfaces. | 25 |
| abstract_inverted_index.object-based | 1, 61 |
| abstract_inverted_index.quantitative | 17 |
| abstract_inverted_index.segmentation | 87, 95, 150, 194 |
| cited_by_percentile_year.max | 94 |
| cited_by_percentile_year.min | 90 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile.value | 0.58265036 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |