Segmentation of Geophysical Data: A Big Data Friendly Approach Article Swipe
YOU?
·
· 2015
· Open Access
·
· DOI: https://doi.org/10.1016/j.procs.2015.07.277
A new scalable segmentation algorithm is proposed in this paper for the forensic determination of level shifts in geophysical time series. While a number of segmentation algorithms exist, they are generally not ‘big data friendly’ due either to quadratic scaling of computation time in the length of the series N or subjective penalty parameters. The proposed algorithm is called SumSeg as it collects a table of potential break points via iterative ternary splits on the extreme values of the scaled partial sums of the data. It then filters the break points on their statistical significance and peak shape. Our algorithm is linear in N and logarithmic in the number of breaks B, while returning a flexible nested segmentation model that can be objectively evaluated using the area under the receiver operator curve (AUC). We demonstrate the comparative performance of SumSeg against three other algorithms. SumSeg is available as an R package from the development site at http://github.com/davids99us/anomaly.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.procs.2015.07.277
- OA Status
- diamond
- References
- 19
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W885561412
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W885561412Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.procs.2015.07.277Digital Object Identifier
- Title
-
Segmentation of Geophysical Data: A Big Data Friendly ApproachWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2015Year of publication
- Publication date
-
2015-01-01Full publication date if available
- Authors
-
David Stockwell, Ligang Zhang, Brijesh VermaList of authors in order
- Landing page
-
https://doi.org/10.1016/j.procs.2015.07.277Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.procs.2015.07.277Direct OA link when available
- Concepts
-
Computer science, Big data, Segmentation, Geophysics, Data science, Data mining, Artificial intelligence, GeologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
19Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W885561412 |
|---|---|
| doi | https://doi.org/10.1016/j.procs.2015.07.277 |
| ids.doi | https://doi.org/10.1016/j.procs.2015.07.277 |
| ids.mag | 885561412 |
| ids.openalex | https://openalex.org/W885561412 |
| fwci | 0.0 |
| type | article |
| title | Segmentation of Geophysical Data: A Big Data Friendly Approach |
| biblio.issue | |
| biblio.volume | 53 |
| biblio.last_page | 47 |
| biblio.first_page | 39 |
| topics[0].id | https://openalex.org/T12205 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9983999729156494 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1711 |
| topics[0].subfield.display_name | Signal Processing |
| topics[0].display_name | Time Series Analysis and Forecasting |
| topics[1].id | https://openalex.org/T11512 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9937000274658203 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Anomaly Detection Techniques and Applications |
| topics[2].id | https://openalex.org/T12157 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9860000014305115 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Geochemistry and Geologic Mapping |
| funders[0].id | https://openalex.org/F4320315254 |
| funders[0].ror | |
| funders[0].display_name | Innovative Research Group Project of the National Natural Science Foundation of China |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8790290951728821 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C75684735 |
| concepts[1].level | 2 |
| concepts[1].score | 0.615046501159668 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q858810 |
| concepts[1].display_name | Big data |
| concepts[2].id | https://openalex.org/C89600930 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5340344905853271 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[2].display_name | Segmentation |
| concepts[3].id | https://openalex.org/C8058405 |
| concepts[3].level | 1 |
| concepts[3].score | 0.49584946036338806 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q46255 |
| concepts[3].display_name | Geophysics |
| concepts[4].id | https://openalex.org/C2522767166 |
| concepts[4].level | 1 |
| concepts[4].score | 0.450167715549469 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2374463 |
| concepts[4].display_name | Data science |
| concepts[5].id | https://openalex.org/C124101348 |
| concepts[5].level | 1 |
| concepts[5].score | 0.3831367492675781 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[5].display_name | Data mining |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.31406599283218384 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C127313418 |
| concepts[7].level | 0 |
| concepts[7].score | 0.16076862812042236 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[7].display_name | Geology |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.8790290951728821 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/big-data |
| keywords[1].score | 0.615046501159668 |
| keywords[1].display_name | Big data |
| keywords[2].id | https://openalex.org/keywords/segmentation |
| keywords[2].score | 0.5340344905853271 |
| keywords[2].display_name | Segmentation |
| keywords[3].id | https://openalex.org/keywords/geophysics |
| keywords[3].score | 0.49584946036338806 |
| keywords[3].display_name | Geophysics |
| keywords[4].id | https://openalex.org/keywords/data-science |
| keywords[4].score | 0.450167715549469 |
| keywords[4].display_name | Data science |
| keywords[5].id | https://openalex.org/keywords/data-mining |
| keywords[5].score | 0.3831367492675781 |
| keywords[5].display_name | Data mining |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.31406599283218384 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/geology |
| keywords[7].score | 0.16076862812042236 |
| keywords[7].display_name | Geology |
| language | en |
| locations[0].id | doi:10.1016/j.procs.2015.07.277 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S120348307 |
| locations[0].source.issn | 1877-0509 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1877-0509 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Procedia Computer Science |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Procedia Computer Science |
| locations[0].landing_page_url | https://doi.org/10.1016/j.procs.2015.07.277 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5029716397 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | David Stockwell |
| authorships[0].countries | AU |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I74899385 |
| authorships[0].affiliations[0].raw_affiliation_string | Centre for Intelligent and Networked Systems at Central Queensland University, Australia |
| authorships[0].institutions[0].id | https://openalex.org/I74899385 |
| authorships[0].institutions[0].ror | https://ror.org/023q4bk22 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I74899385 |
| authorships[0].institutions[0].country_code | AU |
| authorships[0].institutions[0].display_name | Central Queensland University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | David R.B. Stockwell |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Centre for Intelligent and Networked Systems at Central Queensland University, Australia |
| authorships[1].author.id | https://openalex.org/A5100778318 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-6925-9086 |
| authorships[1].author.display_name | Ligang Zhang |
| authorships[1].countries | AU |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I74899385 |
| authorships[1].affiliations[0].raw_affiliation_string | Centre for Intelligent and Networked Systems at Central Queensland University, Australia |
| authorships[1].institutions[0].id | https://openalex.org/I74899385 |
| authorships[1].institutions[0].ror | https://ror.org/023q4bk22 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I74899385 |
| authorships[1].institutions[0].country_code | AU |
| authorships[1].institutions[0].display_name | Central Queensland University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ligang Zhang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Centre for Intelligent and Networked Systems at Central Queensland University, Australia |
| authorships[2].author.id | https://openalex.org/A5026528338 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-4618-0479 |
| authorships[2].author.display_name | Brijesh Verma |
| authorships[2].countries | AU |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I74899385 |
| authorships[2].affiliations[0].raw_affiliation_string | Centre for Intelligent and Networked Systems at Central Queensland University, Australia |
| authorships[2].institutions[0].id | https://openalex.org/I74899385 |
| authorships[2].institutions[0].ror | https://ror.org/023q4bk22 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I74899385 |
| authorships[2].institutions[0].country_code | AU |
| authorships[2].institutions[0].display_name | Central Queensland University |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Brijesh Verma |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Centre for Intelligent and Networked Systems at Central Queensland University, Australia |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.procs.2015.07.277 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Segmentation of Geophysical Data: A Big Data Friendly Approach |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12205 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9983999729156494 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1711 |
| primary_topic.subfield.display_name | Signal Processing |
| primary_topic.display_name | Time Series Analysis and Forecasting |
| related_works | https://openalex.org/W4322629366, https://openalex.org/W2808989540, https://openalex.org/W2397053934, https://openalex.org/W1039292361, https://openalex.org/W2551093110, https://openalex.org/W4237919137, https://openalex.org/W3184179822, https://openalex.org/W3095362084, https://openalex.org/W2148016376, https://openalex.org/W3003361536 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1016/j.procs.2015.07.277 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S120348307 |
| best_oa_location.source.issn | 1877-0509 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1877-0509 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Procedia Computer Science |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Elsevier BV |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Procedia Computer Science |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.procs.2015.07.277 |
| primary_location.id | doi:10.1016/j.procs.2015.07.277 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S120348307 |
| primary_location.source.issn | 1877-0509 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1877-0509 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Procedia Computer Science |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Procedia Computer Science |
| primary_location.landing_page_url | https://doi.org/10.1016/j.procs.2015.07.277 |
| publication_date | 2015-01-01 |
| publication_year | 2015 |
| referenced_works | https://openalex.org/W2141124398, https://openalex.org/W2127710810, https://openalex.org/W6628085419, https://openalex.org/W2116453826, https://openalex.org/W2007196617, https://openalex.org/W2008720804, https://openalex.org/W2066157914, https://openalex.org/W2042190395, https://openalex.org/W1793984240, https://openalex.org/W2142736626, https://openalex.org/W2158390955, https://openalex.org/W2153133730, https://openalex.org/W2051894623, https://openalex.org/W4205780337, https://openalex.org/W1832367887, https://openalex.org/W2051310018, https://openalex.org/W1515219885, https://openalex.org/W1529776214, https://openalex.org/W58109815 |
| referenced_works_count | 19 |
| abstract_inverted_index.A | 3 |
| abstract_inverted_index.N | 52, 106 |
| abstract_inverted_index.R | 152 |
| abstract_inverted_index.a | 25, 66, 117 |
| abstract_inverted_index.B, | 114 |
| abstract_inverted_index.It | 88 |
| abstract_inverted_index.We | 136 |
| abstract_inverted_index.an | 151 |
| abstract_inverted_index.as | 63, 150 |
| abstract_inverted_index.at | 158 |
| abstract_inverted_index.be | 124 |
| abstract_inverted_index.in | 10, 20, 46, 105, 109 |
| abstract_inverted_index.is | 8, 60, 103, 148 |
| abstract_inverted_index.it | 64 |
| abstract_inverted_index.of | 17, 27, 43, 49, 68, 80, 85, 112, 141 |
| abstract_inverted_index.on | 76, 94 |
| abstract_inverted_index.or | 53 |
| abstract_inverted_index.to | 40 |
| abstract_inverted_index.Our | 101 |
| abstract_inverted_index.The | 57 |
| abstract_inverted_index.and | 98, 107 |
| abstract_inverted_index.are | 32 |
| abstract_inverted_index.can | 123 |
| abstract_inverted_index.due | 38 |
| abstract_inverted_index.for | 13 |
| abstract_inverted_index.new | 4 |
| abstract_inverted_index.not | 34 |
| abstract_inverted_index.the | 14, 47, 50, 77, 81, 86, 91, 110, 128, 131, 138, 155 |
| abstract_inverted_index.via | 72 |
| abstract_inverted_index.area | 129 |
| abstract_inverted_index.data | 36 |
| abstract_inverted_index.from | 154 |
| abstract_inverted_index.peak | 99 |
| abstract_inverted_index.site | 157 |
| abstract_inverted_index.sums | 84 |
| abstract_inverted_index.that | 122 |
| abstract_inverted_index.then | 89 |
| abstract_inverted_index.they | 31 |
| abstract_inverted_index.this | 11 |
| abstract_inverted_index.time | 22, 45 |
| abstract_inverted_index.While | 24 |
| abstract_inverted_index.break | 70, 92 |
| abstract_inverted_index.curve | 134 |
| abstract_inverted_index.data. | 87 |
| abstract_inverted_index.level | 18 |
| abstract_inverted_index.model | 121 |
| abstract_inverted_index.other | 145 |
| abstract_inverted_index.paper | 12 |
| abstract_inverted_index.table | 67 |
| abstract_inverted_index.their | 95 |
| abstract_inverted_index.three | 144 |
| abstract_inverted_index.under | 130 |
| abstract_inverted_index.using | 127 |
| abstract_inverted_index.while | 115 |
| abstract_inverted_index.(AUC). | 135 |
| abstract_inverted_index.SumSeg | 62, 142, 147 |
| abstract_inverted_index.breaks | 113 |
| abstract_inverted_index.called | 61 |
| abstract_inverted_index.either | 39 |
| abstract_inverted_index.exist, | 30 |
| abstract_inverted_index.length | 48 |
| abstract_inverted_index.linear | 104 |
| abstract_inverted_index.nested | 119 |
| abstract_inverted_index.number | 26, 111 |
| abstract_inverted_index.points | 71, 93 |
| abstract_inverted_index.scaled | 82 |
| abstract_inverted_index.series | 51 |
| abstract_inverted_index.shape. | 100 |
| abstract_inverted_index.shifts | 19 |
| abstract_inverted_index.splits | 75 |
| abstract_inverted_index.values | 79 |
| abstract_inverted_index.‘big | 35 |
| abstract_inverted_index.against | 143 |
| abstract_inverted_index.extreme | 78 |
| abstract_inverted_index.filters | 90 |
| abstract_inverted_index.package | 153 |
| abstract_inverted_index.partial | 83 |
| abstract_inverted_index.penalty | 55 |
| abstract_inverted_index.scaling | 42 |
| abstract_inverted_index.series. | 23 |
| abstract_inverted_index.ternary | 74 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.collects | 65 |
| abstract_inverted_index.flexible | 118 |
| abstract_inverted_index.forensic | 15 |
| abstract_inverted_index.operator | 133 |
| abstract_inverted_index.proposed | 9, 58 |
| abstract_inverted_index.receiver | 132 |
| abstract_inverted_index.scalable | 5 |
| abstract_inverted_index.algorithm | 7, 59, 102 |
| abstract_inverted_index.available | 149 |
| abstract_inverted_index.evaluated | 126 |
| abstract_inverted_index.generally | 33 |
| abstract_inverted_index.iterative | 73 |
| abstract_inverted_index.potential | 69 |
| abstract_inverted_index.quadratic | 41 |
| abstract_inverted_index.returning | 116 |
| abstract_inverted_index.algorithms | 29 |
| abstract_inverted_index.subjective | 54 |
| abstract_inverted_index.algorithms. | 146 |
| abstract_inverted_index.comparative | 139 |
| abstract_inverted_index.computation | 44 |
| abstract_inverted_index.demonstrate | 137 |
| abstract_inverted_index.development | 156 |
| abstract_inverted_index.friendly’ | 37 |
| abstract_inverted_index.geophysical | 21 |
| abstract_inverted_index.logarithmic | 108 |
| abstract_inverted_index.objectively | 125 |
| abstract_inverted_index.parameters. | 56 |
| abstract_inverted_index.performance | 140 |
| abstract_inverted_index.statistical | 96 |
| abstract_inverted_index.segmentation | 6, 28, 120 |
| abstract_inverted_index.significance | 97 |
| abstract_inverted_index.determination | 16 |
| abstract_inverted_index.http://github.com/davids99us/anomaly. | 159 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/16 |
| sustainable_development_goals[0].score | 0.5899999737739563 |
| sustainable_development_goals[0].display_name | Peace, Justice and strong institutions |
| citation_normalized_percentile.value | 0.00772712 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |