Segmented Gurney Flaps for Enhanced Wind Turbine Wake Recovery Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.5194/wes-2023-90
The wind turbine wake is a downstream region of velocity deficit, featuring higher turbulence and a complex helical vortex structure. In low ambient turbulence and low tip speed ratio conditions, the wind turbine wake is extremely stable. The impact of the velocity deficit is a power loss for the downstream wind turbine, which scales with the velocity cube. This study uses field tests and simulations to evaluate segmented Gurney flaps for enhanced wind turbine wake recovery and power output in a wind farm setting; where the power and loads of the retrofitted wind turbine were assessed. Four Gurney flaps were attached to each blade tip of a 3.8 MW research wind turbine. This configuration is hypothesised (in line with an ECN (now TNO Wind Energy) patent) to cause a spatial variation to the stable tip vortex and induce turbulence in the wake for faster wake mixing. Field tests using a scanning LiDAR were conducted to quantify the wind turbine wake recovery between the baseline and the retrofitted configuration in various atmospheric conditions. The results show a consistent increase in wake recovery for the Gurney flap configuration, generally at all downstream distances (span wise averaged deficits reduced by roughly 10 % at hub height, at a downstream distance of 5D), pronounced at low tip speed ratio conditions. Using crude assumptions, this implies a 4 % relative increase in wind farm efficiency for a typical wind farm with outer rows of wind turbines with segmented Gurney flaps. The impact of retrofitting on turbine power and loads remained within the measurement uncertainty band, and this limited effect is confirmed by design load simulations. In this work, a very successful field test campaign was executed which demonstrated the use of segmented Gurney Flaps as a promising add-on to promote enhanced wind turbine wake recovery for improved overall wind farm farm performance.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.5194/wes-2023-90
- OA Status
- gold
- Cited By
- 4
- References
- 26
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4386092938
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4386092938Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.5194/wes-2023-90Digital Object Identifier
- Title
-
Segmented Gurney Flaps for Enhanced Wind Turbine Wake RecoveryWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-08-23Full publication date if available
- Authors
-
Nirav Dangi, Koen Boorsma, E.T.G. Bot, Wim Bierbooms, Wei YuList of authors in order
- Landing page
-
https://doi.org/10.5194/wes-2023-90Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.5194/wes-2023-90Direct OA link when available
- Concepts
-
Wake, Turbine, Wind speed, Wake turbulence, Wind power, Marine engineering, Turbulence, Environmental science, Wind profile power law, Meteorology, Turbulence kinetic energy, Aerospace engineering, Engineering, Physics, Electrical engineeringTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
4Total citation count in OpenAlex
- Citations by year (recent)
-
2023: 4Per-year citation counts (last 5 years)
- References (count)
-
26Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4386092938 |
|---|---|
| doi | https://doi.org/10.5194/wes-2023-90 |
| ids.doi | https://doi.org/10.5194/wes-2023-90 |
| ids.openalex | https://openalex.org/W4386092938 |
| fwci | 2.07980107 |
| type | preprint |
| title | Segmented Gurney Flaps for Enhanced Wind Turbine Wake Recovery |
| awards[0].id | https://openalex.org/G5186038800 |
| awards[0].funder_id | https://openalex.org/F4320314237 |
| awards[0].display_name | |
| awards[0].funder_award_id | TEHE119018 |
| awards[0].funder_display_name | Rijksdienst voor Ondernemend Nederland |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10680 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2202 |
| topics[0].subfield.display_name | Aerospace Engineering |
| topics[0].display_name | Wind Energy Research and Development |
| topics[1].id | https://openalex.org/T11371 |
| topics[1].field.id | https://openalex.org/fields/23 |
| topics[1].field.display_name | Environmental Science |
| topics[1].score | 0.9986000061035156 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2305 |
| topics[1].subfield.display_name | Environmental Engineering |
| topics[1].display_name | Wind and Air Flow Studies |
| topics[2].id | https://openalex.org/T11254 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9936000108718872 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2206 |
| topics[2].subfield.display_name | Computational Mechanics |
| topics[2].display_name | Fluid Dynamics and Vibration Analysis |
| funders[0].id | https://openalex.org/F4320314237 |
| funders[0].ror | |
| funders[0].display_name | Rijksdienst voor Ondernemend Nederland |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C48939323 |
| concepts[0].level | 2 |
| concepts[0].score | 0.9091132879257202 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q294879 |
| concepts[0].display_name | Wake |
| concepts[1].id | https://openalex.org/C2778449969 |
| concepts[1].level | 2 |
| concepts[1].score | 0.824475884437561 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q130760 |
| concepts[1].display_name | Turbine |
| concepts[2].id | https://openalex.org/C161067210 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6248789429664612 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1464943 |
| concepts[2].display_name | Wind speed |
| concepts[3].id | https://openalex.org/C201923624 |
| concepts[3].level | 3 |
| concepts[3].score | 0.6195238828659058 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1037959 |
| concepts[3].display_name | Wake turbulence |
| concepts[4].id | https://openalex.org/C78600449 |
| concepts[4].level | 2 |
| concepts[4].score | 0.57408207654953 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q43302 |
| concepts[4].display_name | Wind power |
| concepts[5].id | https://openalex.org/C199104240 |
| concepts[5].level | 1 |
| concepts[5].score | 0.570472002029419 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q118291 |
| concepts[5].display_name | Marine engineering |
| concepts[6].id | https://openalex.org/C196558001 |
| concepts[6].level | 2 |
| concepts[6].score | 0.510749101638794 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q190132 |
| concepts[6].display_name | Turbulence |
| concepts[7].id | https://openalex.org/C39432304 |
| concepts[7].level | 0 |
| concepts[7].score | 0.4986283779144287 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q188847 |
| concepts[7].display_name | Environmental science |
| concepts[8].id | https://openalex.org/C154718420 |
| concepts[8].level | 3 |
| concepts[8].score | 0.493587851524353 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q269096 |
| concepts[8].display_name | Wind profile power law |
| concepts[9].id | https://openalex.org/C153294291 |
| concepts[9].level | 1 |
| concepts[9].score | 0.481860488653183 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q25261 |
| concepts[9].display_name | Meteorology |
| concepts[10].id | https://openalex.org/C15476950 |
| concepts[10].level | 3 |
| concepts[10].score | 0.4305756688117981 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7854776 |
| concepts[10].display_name | Turbulence kinetic energy |
| concepts[11].id | https://openalex.org/C146978453 |
| concepts[11].level | 1 |
| concepts[11].score | 0.3708706796169281 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q3798668 |
| concepts[11].display_name | Aerospace engineering |
| concepts[12].id | https://openalex.org/C127413603 |
| concepts[12].level | 0 |
| concepts[12].score | 0.29796165227890015 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[12].display_name | Engineering |
| concepts[13].id | https://openalex.org/C121332964 |
| concepts[13].level | 0 |
| concepts[13].score | 0.27931565046310425 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[13].display_name | Physics |
| concepts[14].id | https://openalex.org/C119599485 |
| concepts[14].level | 1 |
| concepts[14].score | 0.13147097826004028 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q43035 |
| concepts[14].display_name | Electrical engineering |
| keywords[0].id | https://openalex.org/keywords/wake |
| keywords[0].score | 0.9091132879257202 |
| keywords[0].display_name | Wake |
| keywords[1].id | https://openalex.org/keywords/turbine |
| keywords[1].score | 0.824475884437561 |
| keywords[1].display_name | Turbine |
| keywords[2].id | https://openalex.org/keywords/wind-speed |
| keywords[2].score | 0.6248789429664612 |
| keywords[2].display_name | Wind speed |
| keywords[3].id | https://openalex.org/keywords/wake-turbulence |
| keywords[3].score | 0.6195238828659058 |
| keywords[3].display_name | Wake turbulence |
| keywords[4].id | https://openalex.org/keywords/wind-power |
| keywords[4].score | 0.57408207654953 |
| keywords[4].display_name | Wind power |
| keywords[5].id | https://openalex.org/keywords/marine-engineering |
| keywords[5].score | 0.570472002029419 |
| keywords[5].display_name | Marine engineering |
| keywords[6].id | https://openalex.org/keywords/turbulence |
| keywords[6].score | 0.510749101638794 |
| keywords[6].display_name | Turbulence |
| keywords[7].id | https://openalex.org/keywords/environmental-science |
| keywords[7].score | 0.4986283779144287 |
| keywords[7].display_name | Environmental science |
| keywords[8].id | https://openalex.org/keywords/wind-profile-power-law |
| keywords[8].score | 0.493587851524353 |
| keywords[8].display_name | Wind profile power law |
| keywords[9].id | https://openalex.org/keywords/meteorology |
| keywords[9].score | 0.481860488653183 |
| keywords[9].display_name | Meteorology |
| keywords[10].id | https://openalex.org/keywords/turbulence-kinetic-energy |
| keywords[10].score | 0.4305756688117981 |
| keywords[10].display_name | Turbulence kinetic energy |
| keywords[11].id | https://openalex.org/keywords/aerospace-engineering |
| keywords[11].score | 0.3708706796169281 |
| keywords[11].display_name | Aerospace engineering |
| keywords[12].id | https://openalex.org/keywords/engineering |
| keywords[12].score | 0.29796165227890015 |
| keywords[12].display_name | Engineering |
| keywords[13].id | https://openalex.org/keywords/physics |
| keywords[13].score | 0.27931565046310425 |
| keywords[13].display_name | Physics |
| keywords[14].id | https://openalex.org/keywords/electrical-engineering |
| keywords[14].score | 0.13147097826004028 |
| keywords[14].display_name | Electrical engineering |
| language | en |
| locations[0].id | doi:10.5194/wes-2023-90 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.5194/wes-2023-90 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5043325925 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-4883-8294 |
| authorships[0].author.display_name | Nirav Dangi |
| authorships[0].countries | NL |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I148297040 |
| authorships[0].affiliations[0].raw_affiliation_string | Netherlands Organisation for Applied Scientific Research (TNO) |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I98358874 |
| authorships[0].affiliations[1].raw_affiliation_string | Delft University of Technology (TU Delft) |
| authorships[0].institutions[0].id | https://openalex.org/I98358874 |
| authorships[0].institutions[0].ror | https://ror.org/02e2c7k09 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I98358874 |
| authorships[0].institutions[0].country_code | NL |
| authorships[0].institutions[0].display_name | Delft University of Technology |
| authorships[0].institutions[1].id | https://openalex.org/I148297040 |
| authorships[0].institutions[1].ror | https://ror.org/01bnjb948 |
| authorships[0].institutions[1].type | nonprofit |
| authorships[0].institutions[1].lineage | https://openalex.org/I148297040 |
| authorships[0].institutions[1].country_code | NL |
| authorships[0].institutions[1].display_name | Netherlands Organisation for Applied Scientific Research |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Nirav Dangi |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Delft University of Technology (TU Delft), Netherlands Organisation for Applied Scientific Research (TNO) |
| authorships[1].author.id | https://openalex.org/A5018228774 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Koen Boorsma |
| authorships[1].countries | NL |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I148297040 |
| authorships[1].affiliations[0].raw_affiliation_string | Netherlands Organisation for Applied Scientific Research (TNO) |
| authorships[1].institutions[0].id | https://openalex.org/I148297040 |
| authorships[1].institutions[0].ror | https://ror.org/01bnjb948 |
| authorships[1].institutions[0].type | nonprofit |
| authorships[1].institutions[0].lineage | https://openalex.org/I148297040 |
| authorships[1].institutions[0].country_code | NL |
| authorships[1].institutions[0].display_name | Netherlands Organisation for Applied Scientific Research |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Koen Boorsma |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | Netherlands Organisation for Applied Scientific Research (TNO) |
| authorships[2].author.id | https://openalex.org/A5051067068 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | E.T.G. Bot |
| authorships[2].countries | NL |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I148297040 |
| authorships[2].affiliations[0].raw_affiliation_string | Netherlands Organisation for Applied Scientific Research (TNO) |
| authorships[2].institutions[0].id | https://openalex.org/I148297040 |
| authorships[2].institutions[0].ror | https://ror.org/01bnjb948 |
| authorships[2].institutions[0].type | nonprofit |
| authorships[2].institutions[0].lineage | https://openalex.org/I148297040 |
| authorships[2].institutions[0].country_code | NL |
| authorships[2].institutions[0].display_name | Netherlands Organisation for Applied Scientific Research |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Edwin Bot |
| authorships[2].is_corresponding | True |
| authorships[2].raw_affiliation_strings | Netherlands Organisation for Applied Scientific Research (TNO) |
| authorships[3].author.id | https://openalex.org/A5072502727 |
| authorships[3].author.orcid | https://orcid.org/0009-0001-1350-2013 |
| authorships[3].author.display_name | Wim Bierbooms |
| authorships[3].countries | NL |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I98358874 |
| authorships[3].affiliations[0].raw_affiliation_string | Delft University of Technology (TU Delft) |
| authorships[3].institutions[0].id | https://openalex.org/I98358874 |
| authorships[3].institutions[0].ror | https://ror.org/02e2c7k09 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I98358874 |
| authorships[3].institutions[0].country_code | NL |
| authorships[3].institutions[0].display_name | Delft University of Technology |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Wim Bierbooms |
| authorships[3].is_corresponding | True |
| authorships[3].raw_affiliation_strings | Delft University of Technology (TU Delft) |
| authorships[4].author.id | https://openalex.org/A5038923478 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-7829-6129 |
| authorships[4].author.display_name | Wei Yu |
| authorships[4].countries | NL |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I98358874 |
| authorships[4].affiliations[0].raw_affiliation_string | Delft University of Technology (TU Delft) |
| authorships[4].institutions[0].id | https://openalex.org/I98358874 |
| authorships[4].institutions[0].ror | https://ror.org/02e2c7k09 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I98358874 |
| authorships[4].institutions[0].country_code | NL |
| authorships[4].institutions[0].display_name | Delft University of Technology |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Wei Yu |
| authorships[4].is_corresponding | True |
| authorships[4].raw_affiliation_strings | Delft University of Technology (TU Delft) |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.5194/wes-2023-90 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Segmented Gurney Flaps for Enhanced Wind Turbine Wake Recovery |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-25T14:43:58.451035 |
| primary_topic.id | https://openalex.org/T10680 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2202 |
| primary_topic.subfield.display_name | Aerospace Engineering |
| primary_topic.display_name | Wind Energy Research and Development |
| related_works | https://openalex.org/W2145295716, https://openalex.org/W2004189251, https://openalex.org/W2360656443, https://openalex.org/W2382815892, https://openalex.org/W2807008651, https://openalex.org/W2340281719, https://openalex.org/W4307117529, https://openalex.org/W2790827688, https://openalex.org/W4206364477, https://openalex.org/W4385731177 |
| cited_by_count | 4 |
| counts_by_year[0].year | 2023 |
| counts_by_year[0].cited_by_count | 4 |
| locations_count | 1 |
| best_oa_location.id | doi:10.5194/wes-2023-90 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.5194/wes-2023-90 |
| primary_location.id | doi:10.5194/wes-2023-90 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.5194/wes-2023-90 |
| publication_date | 2023-08-23 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W3008482193, https://openalex.org/W2162743401, https://openalex.org/W2037484335, https://openalex.org/W3214336432, https://openalex.org/W2320691283, https://openalex.org/W2031117496, https://openalex.org/W2101763473, https://openalex.org/W2168847308, https://openalex.org/W2001035594, https://openalex.org/W2038331211, https://openalex.org/W3006662376, https://openalex.org/W3205089265, https://openalex.org/W1988481457, https://openalex.org/W4386092938, https://openalex.org/W2999525465, https://openalex.org/W2910790762, https://openalex.org/W3013943288, https://openalex.org/W2943881313, https://openalex.org/W2106600817, https://openalex.org/W2151548357, https://openalex.org/W3094513174, https://openalex.org/W3044641732, https://openalex.org/W4253561951, https://openalex.org/W1593670280, https://openalex.org/W2130523818, https://openalex.org/W2788692296 |
| referenced_works_count | 26 |
| abstract_inverted_index.% | 200, 224 |
| abstract_inverted_index.4 | 223 |
| abstract_inverted_index.a | 6, 16, 45, 81, 107, 129, 150, 176, 205, 222, 232, 274, 291 |
| abstract_inverted_index.10 | 199 |
| abstract_inverted_index.In | 21, 271 |
| abstract_inverted_index.MW | 109 |
| abstract_inverted_index.an | 120 |
| abstract_inverted_index.as | 290 |
| abstract_inverted_index.at | 188, 201, 204, 211 |
| abstract_inverted_index.by | 197, 267 |
| abstract_inverted_index.in | 80, 140, 169, 179, 227 |
| abstract_inverted_index.is | 5, 35, 44, 115, 265 |
| abstract_inverted_index.of | 9, 40, 90, 106, 208, 239, 248, 286 |
| abstract_inverted_index.on | 250 |
| abstract_inverted_index.to | 66, 102, 127, 132, 155, 294 |
| abstract_inverted_index.(in | 117 |
| abstract_inverted_index.3.8 | 108 |
| abstract_inverted_index.ECN | 121 |
| abstract_inverted_index.TNO | 123 |
| abstract_inverted_index.The | 1, 38, 173, 246 |
| abstract_inverted_index.all | 189 |
| abstract_inverted_index.and | 15, 25, 64, 77, 88, 137, 165, 253, 261 |
| abstract_inverted_index.for | 48, 71, 143, 182, 231, 301 |
| abstract_inverted_index.hub | 202 |
| abstract_inverted_index.low | 22, 26, 212 |
| abstract_inverted_index.the | 31, 41, 49, 56, 86, 91, 133, 141, 157, 163, 166, 183, 257, 284 |
| abstract_inverted_index.tip | 27, 105, 135, 213 |
| abstract_inverted_index.use | 285 |
| abstract_inverted_index.was | 280 |
| abstract_inverted_index.(now | 122 |
| abstract_inverted_index.5D), | 209 |
| abstract_inverted_index.Four | 97 |
| abstract_inverted_index.This | 59, 113 |
| abstract_inverted_index.Wind | 124 |
| abstract_inverted_index.each | 103 |
| abstract_inverted_index.farm | 83, 229, 235, 305, 306 |
| abstract_inverted_index.flap | 185 |
| abstract_inverted_index.line | 118 |
| abstract_inverted_index.load | 269 |
| abstract_inverted_index.loss | 47 |
| abstract_inverted_index.rows | 238 |
| abstract_inverted_index.show | 175 |
| abstract_inverted_index.test | 278 |
| abstract_inverted_index.this | 220, 262, 272 |
| abstract_inverted_index.uses | 61 |
| abstract_inverted_index.very | 275 |
| abstract_inverted_index.wake | 4, 34, 75, 142, 145, 160, 180, 299 |
| abstract_inverted_index.were | 95, 100, 153 |
| abstract_inverted_index.wind | 2, 32, 51, 73, 82, 93, 111, 158, 228, 234, 240, 297, 304 |
| abstract_inverted_index.wise | 193 |
| abstract_inverted_index.with | 55, 119, 236, 242 |
| abstract_inverted_index.(span | 192 |
| abstract_inverted_index.Field | 147 |
| abstract_inverted_index.Flaps | 289 |
| abstract_inverted_index.LiDAR | 152 |
| abstract_inverted_index.Using | 217 |
| abstract_inverted_index.band, | 260 |
| abstract_inverted_index.blade | 104 |
| abstract_inverted_index.cause | 128 |
| abstract_inverted_index.crude | 218 |
| abstract_inverted_index.cube. | 58 |
| abstract_inverted_index.field | 62, 277 |
| abstract_inverted_index.flaps | 70, 99 |
| abstract_inverted_index.loads | 89, 254 |
| abstract_inverted_index.outer | 237 |
| abstract_inverted_index.power | 46, 78, 87, 252 |
| abstract_inverted_index.ratio | 29, 215 |
| abstract_inverted_index.speed | 28, 214 |
| abstract_inverted_index.study | 60 |
| abstract_inverted_index.tests | 63, 148 |
| abstract_inverted_index.using | 149 |
| abstract_inverted_index.where | 85 |
| abstract_inverted_index.which | 53, 282 |
| abstract_inverted_index.work, | 273 |
| abstract_inverted_index.Gurney | 69, 98, 184, 244, 288 |
| abstract_inverted_index.add-on | 293 |
| abstract_inverted_index.design | 268 |
| abstract_inverted_index.effect | 264 |
| abstract_inverted_index.faster | 144 |
| abstract_inverted_index.flaps. | 245 |
| abstract_inverted_index.higher | 13 |
| abstract_inverted_index.impact | 39, 247 |
| abstract_inverted_index.induce | 138 |
| abstract_inverted_index.output | 79 |
| abstract_inverted_index.region | 8 |
| abstract_inverted_index.scales | 54 |
| abstract_inverted_index.stable | 134 |
| abstract_inverted_index.vortex | 19, 136 |
| abstract_inverted_index.within | 256 |
| abstract_inverted_index.Energy) | 125 |
| abstract_inverted_index.ambient | 23 |
| abstract_inverted_index.between | 162 |
| abstract_inverted_index.complex | 17 |
| abstract_inverted_index.deficit | 43 |
| abstract_inverted_index.height, | 203 |
| abstract_inverted_index.helical | 18 |
| abstract_inverted_index.implies | 221 |
| abstract_inverted_index.limited | 263 |
| abstract_inverted_index.mixing. | 146 |
| abstract_inverted_index.overall | 303 |
| abstract_inverted_index.patent) | 126 |
| abstract_inverted_index.promote | 295 |
| abstract_inverted_index.reduced | 196 |
| abstract_inverted_index.results | 174 |
| abstract_inverted_index.roughly | 198 |
| abstract_inverted_index.spatial | 130 |
| abstract_inverted_index.stable. | 37 |
| abstract_inverted_index.turbine | 3, 33, 74, 94, 159, 251, 298 |
| abstract_inverted_index.typical | 233 |
| abstract_inverted_index.various | 170 |
| abstract_inverted_index.attached | 101 |
| abstract_inverted_index.averaged | 194 |
| abstract_inverted_index.baseline | 164 |
| abstract_inverted_index.campaign | 279 |
| abstract_inverted_index.deficit, | 11 |
| abstract_inverted_index.deficits | 195 |
| abstract_inverted_index.distance | 207 |
| abstract_inverted_index.enhanced | 72, 296 |
| abstract_inverted_index.evaluate | 67 |
| abstract_inverted_index.executed | 281 |
| abstract_inverted_index.improved | 302 |
| abstract_inverted_index.increase | 178, 226 |
| abstract_inverted_index.quantify | 156 |
| abstract_inverted_index.recovery | 76, 161, 181, 300 |
| abstract_inverted_index.relative | 225 |
| abstract_inverted_index.remained | 255 |
| abstract_inverted_index.research | 110 |
| abstract_inverted_index.scanning | 151 |
| abstract_inverted_index.setting; | 84 |
| abstract_inverted_index.turbine, | 52 |
| abstract_inverted_index.turbine. | 112 |
| abstract_inverted_index.turbines | 241 |
| abstract_inverted_index.velocity | 10, 42, 57 |
| abstract_inverted_index.Abstract. | 0 |
| abstract_inverted_index.assessed. | 96 |
| abstract_inverted_index.conducted | 154 |
| abstract_inverted_index.confirmed | 266 |
| abstract_inverted_index.distances | 191 |
| abstract_inverted_index.extremely | 36 |
| abstract_inverted_index.featuring | 12 |
| abstract_inverted_index.generally | 187 |
| abstract_inverted_index.promising | 292 |
| abstract_inverted_index.segmented | 68, 243, 287 |
| abstract_inverted_index.variation | 131 |
| abstract_inverted_index.consistent | 177 |
| abstract_inverted_index.downstream | 7, 50, 190, 206 |
| abstract_inverted_index.efficiency | 230 |
| abstract_inverted_index.pronounced | 210 |
| abstract_inverted_index.structure. | 20 |
| abstract_inverted_index.successful | 276 |
| abstract_inverted_index.turbulence | 14, 24, 139 |
| abstract_inverted_index.atmospheric | 171 |
| abstract_inverted_index.conditions, | 30 |
| abstract_inverted_index.conditions. | 172, 216 |
| abstract_inverted_index.measurement | 258 |
| abstract_inverted_index.retrofitted | 92, 167 |
| abstract_inverted_index.simulations | 65 |
| abstract_inverted_index.uncertainty | 259 |
| abstract_inverted_index.assumptions, | 219 |
| abstract_inverted_index.demonstrated | 283 |
| abstract_inverted_index.hypothesised | 116 |
| abstract_inverted_index.performance. | 307 |
| abstract_inverted_index.retrofitting | 249 |
| abstract_inverted_index.simulations. | 270 |
| abstract_inverted_index.configuration | 114, 168 |
| abstract_inverted_index.configuration, | 186 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 96 |
| corresponding_author_ids | https://openalex.org/A5043325925, https://openalex.org/A5072502727, https://openalex.org/A5051067068, https://openalex.org/A5018228774, https://openalex.org/A5038923478 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| corresponding_institution_ids | https://openalex.org/I148297040, https://openalex.org/I98358874 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/7 |
| sustainable_development_goals[0].score | 0.9100000262260437 |
| sustainable_development_goals[0].display_name | Affordable and clean energy |
| citation_normalized_percentile.value | 0.88022545 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |