Seizure detection using integrated metaheuristic algorithm based ensemble extreme learning machine Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.1016/j.measen.2022.100617
In biomedical research, the brain signal analysis occupies an important space in recent days. Mostly Epileptic seizure detection is a challenging task for all brain signal researcher. In this paper ensemble approach is considered for seizure classification and detection. It is essential of early detection for the patient to save the life. Initially Wavelet transform is used to extract the relevant features. As the feature dimension is high, features are reduced using linear discriminant analysis (LDA). The metaheuristic algorithms named as Water cycle algorithm and accelerated particle swarm optimization (APSO) are integrated to optimize the weights of ensemble extreme learning machine (EELM) for classification. The features are aligned as input to WCA-APSO based EELM model. To validate the proposed integrated algorithm three benchmark functions are utilized for optimization to exhibit the uniqueness. The data is taken from university of BONN database for experimentation. The performance is measured with the parameters like sensitivity, Specificity, and Accuracy are obtained as 99.32%, 99.68%, and 99.16%, The result found superior as compared to earlier methods and outperforms the classification of Epileptic seizure signals.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.measen.2022.100617
- OA Status
- gold
- Cited By
- 8
- References
- 35
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4312107432
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4312107432Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.measen.2022.100617Digital Object Identifier
- Title
-
Seizure detection using integrated metaheuristic algorithm based ensemble extreme learning machineWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-12-23Full publication date if available
- Authors
-
Sreelekha Panda, Satyasis Mishra, Mihir Narayan Mohanty, Sunita SatapathyList of authors in order
- Landing page
-
https://doi.org/10.1016/j.measen.2022.100617Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.measen.2022.100617Direct OA link when available
- Concepts
-
Particle swarm optimization, Computer science, Linear discriminant analysis, Extreme learning machine, Metaheuristic, Benchmark (surveying), Algorithm, Artificial intelligence, Sensitivity (control systems), Pattern recognition (psychology), Ensemble learning, Machine learning, Dimension (graph theory), Discrete wavelet transform, Wavelet transform, Wavelet, Mathematics, Artificial neural network, Engineering, Geography, Pure mathematics, Geodesy, Electronic engineeringTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
8Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 4, 2024: 2, 2023: 2Per-year citation counts (last 5 years)
- References (count)
-
35Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4312107432 |
|---|---|
| doi | https://doi.org/10.1016/j.measen.2022.100617 |
| ids.doi | https://doi.org/10.1016/j.measen.2022.100617 |
| ids.openalex | https://openalex.org/W4312107432 |
| fwci | 1.2841673 |
| type | article |
| title | Seizure detection using integrated metaheuristic algorithm based ensemble extreme learning machine |
| biblio.issue | |
| biblio.volume | 25 |
| biblio.last_page | 100617 |
| biblio.first_page | 100617 |
| topics[0].id | https://openalex.org/T10429 |
| topics[0].field.id | https://openalex.org/fields/28 |
| topics[0].field.display_name | Neuroscience |
| topics[0].score | 0.9994999766349792 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2805 |
| topics[0].subfield.display_name | Cognitive Neuroscience |
| topics[0].display_name | EEG and Brain-Computer Interfaces |
| topics[1].id | https://openalex.org/T12676 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9988999962806702 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Machine Learning and ELM |
| topics[2].id | https://openalex.org/T12702 |
| topics[2].field.id | https://openalex.org/fields/28 |
| topics[2].field.display_name | Neuroscience |
| topics[2].score | 0.9965999722480774 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2808 |
| topics[2].subfield.display_name | Neurology |
| topics[2].display_name | Brain Tumor Detection and Classification |
| is_xpac | False |
| apc_list.value | 1800 |
| apc_list.currency | USD |
| apc_list.value_usd | 1800 |
| apc_paid.value | 1800 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1800 |
| concepts[0].id | https://openalex.org/C85617194 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6517345905303955 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q2072794 |
| concepts[0].display_name | Particle swarm optimization |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6165740489959717 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C69738355 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6107117533683777 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1228929 |
| concepts[2].display_name | Linear discriminant analysis |
| concepts[3].id | https://openalex.org/C2780150128 |
| concepts[3].level | 3 |
| concepts[3].score | 0.6029021143913269 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21948731 |
| concepts[3].display_name | Extreme learning machine |
| concepts[4].id | https://openalex.org/C109718341 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5983970165252686 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1385229 |
| concepts[4].display_name | Metaheuristic |
| concepts[5].id | https://openalex.org/C185798385 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5797059535980225 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1161707 |
| concepts[5].display_name | Benchmark (surveying) |
| concepts[6].id | https://openalex.org/C11413529 |
| concepts[6].level | 1 |
| concepts[6].score | 0.5559805631637573 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[6].display_name | Algorithm |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.5329232215881348 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| concepts[8].id | https://openalex.org/C21200559 |
| concepts[8].level | 2 |
| concepts[8].score | 0.505075991153717 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7451068 |
| concepts[8].display_name | Sensitivity (control systems) |
| concepts[9].id | https://openalex.org/C153180895 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4943854808807373 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[9].display_name | Pattern recognition (psychology) |
| concepts[10].id | https://openalex.org/C45942800 |
| concepts[10].level | 2 |
| concepts[10].score | 0.47920045256614685 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q245652 |
| concepts[10].display_name | Ensemble learning |
| concepts[11].id | https://openalex.org/C119857082 |
| concepts[11].level | 1 |
| concepts[11].score | 0.4383256733417511 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[11].display_name | Machine learning |
| concepts[12].id | https://openalex.org/C33676613 |
| concepts[12].level | 2 |
| concepts[12].score | 0.41353151202201843 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q13415176 |
| concepts[12].display_name | Dimension (graph theory) |
| concepts[13].id | https://openalex.org/C46286280 |
| concepts[13].level | 4 |
| concepts[13].score | 0.41246384382247925 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q2414958 |
| concepts[13].display_name | Discrete wavelet transform |
| concepts[14].id | https://openalex.org/C196216189 |
| concepts[14].level | 3 |
| concepts[14].score | 0.35986995697021484 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q2867 |
| concepts[14].display_name | Wavelet transform |
| concepts[15].id | https://openalex.org/C47432892 |
| concepts[15].level | 2 |
| concepts[15].score | 0.3181989789009094 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q831390 |
| concepts[15].display_name | Wavelet |
| concepts[16].id | https://openalex.org/C33923547 |
| concepts[16].level | 0 |
| concepts[16].score | 0.17479348182678223 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[16].display_name | Mathematics |
| concepts[17].id | https://openalex.org/C50644808 |
| concepts[17].level | 2 |
| concepts[17].score | 0.13769450783729553 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[17].display_name | Artificial neural network |
| concepts[18].id | https://openalex.org/C127413603 |
| concepts[18].level | 0 |
| concepts[18].score | 0.12384030222892761 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[18].display_name | Engineering |
| concepts[19].id | https://openalex.org/C205649164 |
| concepts[19].level | 0 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[19].display_name | Geography |
| concepts[20].id | https://openalex.org/C202444582 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q837863 |
| concepts[20].display_name | Pure mathematics |
| concepts[21].id | https://openalex.org/C13280743 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q131089 |
| concepts[21].display_name | Geodesy |
| concepts[22].id | https://openalex.org/C24326235 |
| concepts[22].level | 1 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q126095 |
| concepts[22].display_name | Electronic engineering |
| keywords[0].id | https://openalex.org/keywords/particle-swarm-optimization |
| keywords[0].score | 0.6517345905303955 |
| keywords[0].display_name | Particle swarm optimization |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6165740489959717 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/linear-discriminant-analysis |
| keywords[2].score | 0.6107117533683777 |
| keywords[2].display_name | Linear discriminant analysis |
| keywords[3].id | https://openalex.org/keywords/extreme-learning-machine |
| keywords[3].score | 0.6029021143913269 |
| keywords[3].display_name | Extreme learning machine |
| keywords[4].id | https://openalex.org/keywords/metaheuristic |
| keywords[4].score | 0.5983970165252686 |
| keywords[4].display_name | Metaheuristic |
| keywords[5].id | https://openalex.org/keywords/benchmark |
| keywords[5].score | 0.5797059535980225 |
| keywords[5].display_name | Benchmark (surveying) |
| keywords[6].id | https://openalex.org/keywords/algorithm |
| keywords[6].score | 0.5559805631637573 |
| keywords[6].display_name | Algorithm |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.5329232215881348 |
| keywords[7].display_name | Artificial intelligence |
| keywords[8].id | https://openalex.org/keywords/sensitivity |
| keywords[8].score | 0.505075991153717 |
| keywords[8].display_name | Sensitivity (control systems) |
| keywords[9].id | https://openalex.org/keywords/pattern-recognition |
| keywords[9].score | 0.4943854808807373 |
| keywords[9].display_name | Pattern recognition (psychology) |
| keywords[10].id | https://openalex.org/keywords/ensemble-learning |
| keywords[10].score | 0.47920045256614685 |
| keywords[10].display_name | Ensemble learning |
| keywords[11].id | https://openalex.org/keywords/machine-learning |
| keywords[11].score | 0.4383256733417511 |
| keywords[11].display_name | Machine learning |
| keywords[12].id | https://openalex.org/keywords/dimension |
| keywords[12].score | 0.41353151202201843 |
| keywords[12].display_name | Dimension (graph theory) |
| keywords[13].id | https://openalex.org/keywords/discrete-wavelet-transform |
| keywords[13].score | 0.41246384382247925 |
| keywords[13].display_name | Discrete wavelet transform |
| keywords[14].id | https://openalex.org/keywords/wavelet-transform |
| keywords[14].score | 0.35986995697021484 |
| keywords[14].display_name | Wavelet transform |
| keywords[15].id | https://openalex.org/keywords/wavelet |
| keywords[15].score | 0.3181989789009094 |
| keywords[15].display_name | Wavelet |
| keywords[16].id | https://openalex.org/keywords/mathematics |
| keywords[16].score | 0.17479348182678223 |
| keywords[16].display_name | Mathematics |
| keywords[17].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[17].score | 0.13769450783729553 |
| keywords[17].display_name | Artificial neural network |
| keywords[18].id | https://openalex.org/keywords/engineering |
| keywords[18].score | 0.12384030222892761 |
| keywords[18].display_name | Engineering |
| language | en |
| locations[0].id | doi:10.1016/j.measen.2022.100617 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210238442 |
| locations[0].source.issn | 2665-9174 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2665-9174 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Measurement Sensors |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Measurement: Sensors |
| locations[0].landing_page_url | https://doi.org/10.1016/j.measen.2022.100617 |
| locations[1].id | pmh:oai:doaj.org/article:be586fcda0164665a4fe4540102a467f |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Measurement: Sensors, Vol 25, Iss , Pp 100617- (2023) |
| locations[1].landing_page_url | https://doaj.org/article/be586fcda0164665a4fe4540102a467f |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5039895720 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Sreelekha Panda |
| authorships[0].countries | IN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I47639616 |
| authorships[0].affiliations[0].raw_affiliation_string | Centurion University of Technology & Management, Bhubaneswar, Odisha, India |
| authorships[0].institutions[0].id | https://openalex.org/I47639616 |
| authorships[0].institutions[0].ror | https://ror.org/03js1g511 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I47639616 |
| authorships[0].institutions[0].country_code | IN |
| authorships[0].institutions[0].display_name | Centurion University of Technology and Management |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Sreelekha Panda |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Centurion University of Technology & Management, Bhubaneswar, Odisha, India |
| authorships[1].author.id | https://openalex.org/A5100709970 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-3515-4467 |
| authorships[1].author.display_name | Satyasis Mishra |
| authorships[1].countries | IN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I47639616 |
| authorships[1].affiliations[0].raw_affiliation_string | Dept. of ECE, Centurion University of Technology & Management, Bhubaneswar, Odisha, India |
| authorships[1].institutions[0].id | https://openalex.org/I47639616 |
| authorships[1].institutions[0].ror | https://ror.org/03js1g511 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I47639616 |
| authorships[1].institutions[0].country_code | IN |
| authorships[1].institutions[0].display_name | Centurion University of Technology and Management |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Satyasis Mishra |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | Dept. of ECE, Centurion University of Technology & Management, Bhubaneswar, Odisha, India |
| authorships[2].author.id | https://openalex.org/A5016209473 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-1252-949X |
| authorships[2].author.display_name | Mihir Narayan Mohanty |
| authorships[2].countries | IN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I193073490 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of ECE, SOA University, Bhubaneswar, Odisha, India |
| authorships[2].institutions[0].id | https://openalex.org/I193073490 |
| authorships[2].institutions[0].ror | https://ror.org/056ep7w45 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I193073490 |
| authorships[2].institutions[0].country_code | IN |
| authorships[2].institutions[0].display_name | Siksha O Anusandhan University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Mihir Narayana Mohanty |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of ECE, SOA University, Bhubaneswar, Odisha, India |
| authorships[3].author.id | https://openalex.org/A5025440618 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-7811-1489 |
| authorships[3].author.display_name | Sunita Satapathy |
| authorships[3].countries | IN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I47639616 |
| authorships[3].affiliations[0].raw_affiliation_string | Dept. of Zoology, Centurion University of Technology & Management, Bhubaneswar, Odisha, India |
| authorships[3].institutions[0].id | https://openalex.org/I47639616 |
| authorships[3].institutions[0].ror | https://ror.org/03js1g511 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I47639616 |
| authorships[3].institutions[0].country_code | IN |
| authorships[3].institutions[0].display_name | Centurion University of Technology and Management |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Sunita Satapathy |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Dept. of Zoology, Centurion University of Technology & Management, Bhubaneswar, Odisha, India |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.measen.2022.100617 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Seizure detection using integrated metaheuristic algorithm based ensemble extreme learning machine |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10429 |
| primary_topic.field.id | https://openalex.org/fields/28 |
| primary_topic.field.display_name | Neuroscience |
| primary_topic.score | 0.9994999766349792 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2805 |
| primary_topic.subfield.display_name | Cognitive Neuroscience |
| primary_topic.display_name | EEG and Brain-Computer Interfaces |
| related_works | https://openalex.org/W1577789985, https://openalex.org/W4313488044, https://openalex.org/W2792520941, https://openalex.org/W2047056993, https://openalex.org/W2381540339, https://openalex.org/W2112061901, https://openalex.org/W2390482320, https://openalex.org/W1994967090, https://openalex.org/W57803080, https://openalex.org/W3131396379 |
| cited_by_count | 8 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 4 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 2 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 2 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1016/j.measen.2022.100617 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210238442 |
| best_oa_location.source.issn | 2665-9174 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2665-9174 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Measurement Sensors |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Elsevier BV |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Measurement: Sensors |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.measen.2022.100617 |
| primary_location.id | doi:10.1016/j.measen.2022.100617 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210238442 |
| primary_location.source.issn | 2665-9174 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2665-9174 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Measurement Sensors |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Measurement: Sensors |
| primary_location.landing_page_url | https://doi.org/10.1016/j.measen.2022.100617 |
| publication_date | 2022-12-23 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W2563273754, https://openalex.org/W2888549995, https://openalex.org/W2886811593, https://openalex.org/W2955989361, https://openalex.org/W6729486585, https://openalex.org/W2015159867, https://openalex.org/W2885348308, https://openalex.org/W2766733807, https://openalex.org/W2606301878, https://openalex.org/W6732151566, https://openalex.org/W6788583689, https://openalex.org/W3208582610, https://openalex.org/W2962241396, https://openalex.org/W3153000850, https://openalex.org/W3162952110, https://openalex.org/W3168208032, https://openalex.org/W2561617417, https://openalex.org/W3031797629, https://openalex.org/W2170400052, https://openalex.org/W6791627145, https://openalex.org/W2808523744, https://openalex.org/W3159801287, https://openalex.org/W3131943692, https://openalex.org/W2891857146, https://openalex.org/W4226152209, https://openalex.org/W4221053302, https://openalex.org/W6678725129, https://openalex.org/W2043596210, https://openalex.org/W6734394099, https://openalex.org/W2026982506, https://openalex.org/W2593745311, https://openalex.org/W3135769285, https://openalex.org/W2568407436, https://openalex.org/W2129309861, https://openalex.org/W3120637574 |
| referenced_works_count | 35 |
| abstract_inverted_index.a | 19 |
| abstract_inverted_index.As | 62 |
| abstract_inverted_index.In | 0, 27 |
| abstract_inverted_index.It | 39 |
| abstract_inverted_index.To | 115 |
| abstract_inverted_index.an | 8 |
| abstract_inverted_index.as | 80, 108, 157, 166 |
| abstract_inverted_index.in | 11 |
| abstract_inverted_index.is | 18, 32, 40, 55, 66, 134, 145 |
| abstract_inverted_index.of | 42, 96, 138, 175 |
| abstract_inverted_index.to | 48, 57, 92, 110, 128, 168 |
| abstract_inverted_index.The | 76, 104, 132, 143, 162 |
| abstract_inverted_index.all | 23 |
| abstract_inverted_index.and | 37, 84, 153, 160, 171 |
| abstract_inverted_index.are | 69, 90, 106, 124, 155 |
| abstract_inverted_index.for | 22, 34, 45, 102, 126, 141 |
| abstract_inverted_index.the | 3, 46, 50, 59, 63, 94, 117, 130, 148, 173 |
| abstract_inverted_index.BONN | 139 |
| abstract_inverted_index.EELM | 113 |
| abstract_inverted_index.data | 133 |
| abstract_inverted_index.from | 136 |
| abstract_inverted_index.like | 150 |
| abstract_inverted_index.save | 49 |
| abstract_inverted_index.task | 21 |
| abstract_inverted_index.this | 28 |
| abstract_inverted_index.used | 56 |
| abstract_inverted_index.with | 147 |
| abstract_inverted_index.Water | 81 |
| abstract_inverted_index.based | 112 |
| abstract_inverted_index.brain | 4, 24 |
| abstract_inverted_index.cycle | 82 |
| abstract_inverted_index.days. | 13 |
| abstract_inverted_index.early | 43 |
| abstract_inverted_index.found | 164 |
| abstract_inverted_index.high, | 67 |
| abstract_inverted_index.input | 109 |
| abstract_inverted_index.life. | 51 |
| abstract_inverted_index.named | 79 |
| abstract_inverted_index.paper | 29 |
| abstract_inverted_index.space | 10 |
| abstract_inverted_index.swarm | 87 |
| abstract_inverted_index.taken | 135 |
| abstract_inverted_index.three | 121 |
| abstract_inverted_index.using | 71 |
| abstract_inverted_index.(APSO) | 89 |
| abstract_inverted_index.(EELM) | 101 |
| abstract_inverted_index.(LDA). | 75 |
| abstract_inverted_index.Mostly | 14 |
| abstract_inverted_index.linear | 72 |
| abstract_inverted_index.model. | 114 |
| abstract_inverted_index.recent | 12 |
| abstract_inverted_index.result | 163 |
| abstract_inverted_index.signal | 5, 25 |
| abstract_inverted_index.99.16%, | 161 |
| abstract_inverted_index.99.32%, | 158 |
| abstract_inverted_index.99.68%, | 159 |
| abstract_inverted_index.Wavelet | 53 |
| abstract_inverted_index.aligned | 107 |
| abstract_inverted_index.earlier | 169 |
| abstract_inverted_index.exhibit | 129 |
| abstract_inverted_index.extract | 58 |
| abstract_inverted_index.extreme | 98 |
| abstract_inverted_index.feature | 64 |
| abstract_inverted_index.machine | 100 |
| abstract_inverted_index.methods | 170 |
| abstract_inverted_index.patient | 47 |
| abstract_inverted_index.reduced | 70 |
| abstract_inverted_index.seizure | 16, 35, 177 |
| abstract_inverted_index.weights | 95 |
| abstract_inverted_index.Accuracy | 154 |
| abstract_inverted_index.WCA-APSO | 111 |
| abstract_inverted_index.analysis | 6, 74 |
| abstract_inverted_index.approach | 31 |
| abstract_inverted_index.compared | 167 |
| abstract_inverted_index.database | 140 |
| abstract_inverted_index.ensemble | 30, 97 |
| abstract_inverted_index.features | 68, 105 |
| abstract_inverted_index.learning | 99 |
| abstract_inverted_index.measured | 146 |
| abstract_inverted_index.obtained | 156 |
| abstract_inverted_index.occupies | 7 |
| abstract_inverted_index.optimize | 93 |
| abstract_inverted_index.particle | 86 |
| abstract_inverted_index.proposed | 118 |
| abstract_inverted_index.relevant | 60 |
| abstract_inverted_index.signals. | 178 |
| abstract_inverted_index.superior | 165 |
| abstract_inverted_index.utilized | 125 |
| abstract_inverted_index.validate | 116 |
| abstract_inverted_index.Epileptic | 15, 176 |
| abstract_inverted_index.Initially | 52 |
| abstract_inverted_index.algorithm | 83, 120 |
| abstract_inverted_index.benchmark | 122 |
| abstract_inverted_index.detection | 17, 44 |
| abstract_inverted_index.dimension | 65 |
| abstract_inverted_index.essential | 41 |
| abstract_inverted_index.features. | 61 |
| abstract_inverted_index.functions | 123 |
| abstract_inverted_index.important | 9 |
| abstract_inverted_index.research, | 2 |
| abstract_inverted_index.transform | 54 |
| abstract_inverted_index.algorithms | 78 |
| abstract_inverted_index.biomedical | 1 |
| abstract_inverted_index.considered | 33 |
| abstract_inverted_index.detection. | 38 |
| abstract_inverted_index.integrated | 91, 119 |
| abstract_inverted_index.parameters | 149 |
| abstract_inverted_index.university | 137 |
| abstract_inverted_index.accelerated | 85 |
| abstract_inverted_index.challenging | 20 |
| abstract_inverted_index.outperforms | 172 |
| abstract_inverted_index.performance | 144 |
| abstract_inverted_index.researcher. | 26 |
| abstract_inverted_index.uniqueness. | 131 |
| abstract_inverted_index.Specificity, | 152 |
| abstract_inverted_index.discriminant | 73 |
| abstract_inverted_index.optimization | 88, 127 |
| abstract_inverted_index.sensitivity, | 151 |
| abstract_inverted_index.metaheuristic | 77 |
| abstract_inverted_index.classification | 36, 174 |
| abstract_inverted_index.classification. | 103 |
| abstract_inverted_index.experimentation. | 142 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 94 |
| corresponding_author_ids | https://openalex.org/A5100709970 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| corresponding_institution_ids | https://openalex.org/I47639616 |
| citation_normalized_percentile.value | 0.7480715 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |