Selecting the best compositions of a wheelchair basketball team: a data-driven approach Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2310.03417
Wheelchair basketball, regulated by the International Wheelchair Basketball Federation, is a sport designed for individuals with physical disabilities. This paper presents a data-driven tool that effectively determines optimal team line-ups based on past performance data and metrics for player effectiveness. Our proposed methodology involves combining a Bayesian longitudinal model with an integer linear problem to optimise the line-up of a wheelchair basketball team. To illustrate our approach, we use real data from a team competing in the Rollstuhlbasketball Bundesliga, namely the Doneck Dolphins Trier. We consider three distinct performance metrics for each player and incorporate uncertainty from the posterior predictive distribution of the longitudinal model into the optimisation process. The results demonstrate the tool's ability to select the most suitable team compositions and calculate posterior probabilities of compatibility or incompatibility among players on the court.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2310.03417
- https://arxiv.org/pdf/2310.03417
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4387427707
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4387427707Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2310.03417Digital Object Identifier
- Title
-
Selecting the best compositions of a wheelchair basketball team: a data-driven approachWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-10-05Full publication date if available
- Authors
-
Gabriel F. Calvo, Carmen Armero, Bernd Grimm, Christophe LeyList of authors in order
- Landing page
-
https://arxiv.org/abs/2310.03417Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2310.03417Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2310.03417Direct OA link when available
- Concepts
-
Basketball, Wheelchair, Computer science, Inertial measurement unit, Bayesian probability, Process (computing), Team sport, Operations research, Artificial intelligence, Machine learning, Engineering, Geography, World Wide Web, Medicine, Operating system, Athletes, Archaeology, Physical therapyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4387427707 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2310.03417 |
| ids.doi | https://doi.org/10.48550/arxiv.2310.03417 |
| ids.openalex | https://openalex.org/W4387427707 |
| fwci | |
| type | preprint |
| title | Selecting the best compositions of a wheelchair basketball team: a data-driven approach |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11700 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9283999800682068 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2746 |
| topics[0].subfield.display_name | Surgery |
| topics[0].display_name | Hemodynamic Monitoring and Therapy |
| topics[1].id | https://openalex.org/T12443 |
| topics[1].field.id | https://openalex.org/fields/33 |
| topics[1].field.display_name | Social Sciences |
| topics[1].score | 0.9275000095367432 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3312 |
| topics[1].subfield.display_name | Sociology and Political Science |
| topics[1].display_name | Delphi Technique in Research |
| topics[2].id | https://openalex.org/T11467 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9150000214576721 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2711 |
| topics[2].subfield.display_name | Emergency Medicine |
| topics[2].display_name | Trauma and Emergency Care Studies |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C103189561 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7816859483718872 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q5372 |
| concepts[0].display_name | Basketball |
| concepts[1].id | https://openalex.org/C2781042323 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5452251434326172 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q191931 |
| concepts[1].display_name | Wheelchair |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5119467973709106 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C79061980 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5041989088058472 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q941680 |
| concepts[3].display_name | Inertial measurement unit |
| concepts[4].id | https://openalex.org/C107673813 |
| concepts[4].level | 2 |
| concepts[4].score | 0.49241483211517334 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q812534 |
| concepts[4].display_name | Bayesian probability |
| concepts[5].id | https://openalex.org/C98045186 |
| concepts[5].level | 2 |
| concepts[5].score | 0.46770569682121277 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q205663 |
| concepts[5].display_name | Process (computing) |
| concepts[6].id | https://openalex.org/C2780082397 |
| concepts[6].level | 3 |
| concepts[6].score | 0.42919525504112244 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q216048 |
| concepts[6].display_name | Team sport |
| concepts[7].id | https://openalex.org/C42475967 |
| concepts[7].level | 1 |
| concepts[7].score | 0.3390558958053589 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q194292 |
| concepts[7].display_name | Operations research |
| concepts[8].id | https://openalex.org/C154945302 |
| concepts[8].level | 1 |
| concepts[8].score | 0.3362535834312439 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[8].display_name | Artificial intelligence |
| concepts[9].id | https://openalex.org/C119857082 |
| concepts[9].level | 1 |
| concepts[9].score | 0.33521950244903564 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[9].display_name | Machine learning |
| concepts[10].id | https://openalex.org/C127413603 |
| concepts[10].level | 0 |
| concepts[10].score | 0.2598693072795868 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[10].display_name | Engineering |
| concepts[11].id | https://openalex.org/C205649164 |
| concepts[11].level | 0 |
| concepts[11].score | 0.08781573176383972 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[11].display_name | Geography |
| concepts[12].id | https://openalex.org/C136764020 |
| concepts[12].level | 1 |
| concepts[12].score | 0.08466106653213501 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q466 |
| concepts[12].display_name | World Wide Web |
| concepts[13].id | https://openalex.org/C71924100 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[13].display_name | Medicine |
| concepts[14].id | https://openalex.org/C111919701 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[14].display_name | Operating system |
| concepts[15].id | https://openalex.org/C2781054738 |
| concepts[15].level | 2 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q4813730 |
| concepts[15].display_name | Athletes |
| concepts[16].id | https://openalex.org/C166957645 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q23498 |
| concepts[16].display_name | Archaeology |
| concepts[17].id | https://openalex.org/C1862650 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q186005 |
| concepts[17].display_name | Physical therapy |
| keywords[0].id | https://openalex.org/keywords/basketball |
| keywords[0].score | 0.7816859483718872 |
| keywords[0].display_name | Basketball |
| keywords[1].id | https://openalex.org/keywords/wheelchair |
| keywords[1].score | 0.5452251434326172 |
| keywords[1].display_name | Wheelchair |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.5119467973709106 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/inertial-measurement-unit |
| keywords[3].score | 0.5041989088058472 |
| keywords[3].display_name | Inertial measurement unit |
| keywords[4].id | https://openalex.org/keywords/bayesian-probability |
| keywords[4].score | 0.49241483211517334 |
| keywords[4].display_name | Bayesian probability |
| keywords[5].id | https://openalex.org/keywords/process |
| keywords[5].score | 0.46770569682121277 |
| keywords[5].display_name | Process (computing) |
| keywords[6].id | https://openalex.org/keywords/team-sport |
| keywords[6].score | 0.42919525504112244 |
| keywords[6].display_name | Team sport |
| keywords[7].id | https://openalex.org/keywords/operations-research |
| keywords[7].score | 0.3390558958053589 |
| keywords[7].display_name | Operations research |
| keywords[8].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[8].score | 0.3362535834312439 |
| keywords[8].display_name | Artificial intelligence |
| keywords[9].id | https://openalex.org/keywords/machine-learning |
| keywords[9].score | 0.33521950244903564 |
| keywords[9].display_name | Machine learning |
| keywords[10].id | https://openalex.org/keywords/engineering |
| keywords[10].score | 0.2598693072795868 |
| keywords[10].display_name | Engineering |
| keywords[11].id | https://openalex.org/keywords/geography |
| keywords[11].score | 0.08781573176383972 |
| keywords[11].display_name | Geography |
| keywords[12].id | https://openalex.org/keywords/world-wide-web |
| keywords[12].score | 0.08466106653213501 |
| keywords[12].display_name | World Wide Web |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2310.03417 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2310.03417 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2310.03417 |
| locations[1].id | doi:10.48550/arxiv.2310.03417 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2310.03417 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5035709346 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-3623-236X |
| authorships[0].author.display_name | Gabriel F. Calvo |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Calvo, Gabriel |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5101876069 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-9839-6442 |
| authorships[1].author.display_name | Carmen Armero |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Armero, Carmen |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5029252814 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-4585-4643 |
| authorships[2].author.display_name | Bernd Grimm |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Grimm, Bernd |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5071802800 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-2290-8437 |
| authorships[3].author.display_name | Christophe Ley |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Ley, Christophe |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2310.03417 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Selecting the best compositions of a wheelchair basketball team: a data-driven approach |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11700 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9283999800682068 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2746 |
| primary_topic.subfield.display_name | Surgery |
| primary_topic.display_name | Hemodynamic Monitoring and Therapy |
| related_works | https://openalex.org/W2369330680, https://openalex.org/W2387007275, https://openalex.org/W2389047293, https://openalex.org/W2348951541, https://openalex.org/W2363923555, https://openalex.org/W2379277877, https://openalex.org/W2359223739, https://openalex.org/W2377467184, https://openalex.org/W4225966085, https://openalex.org/W2383525183 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2310.03417 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2310.03417 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2310.03417 |
| primary_location.id | pmh:oai:arXiv.org:2310.03417 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2310.03417 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2310.03417 |
| publication_date | 2023-10-05 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 10, 21, 45, 59, 72 |
| abstract_inverted_index.To | 63 |
| abstract_inverted_index.We | 84 |
| abstract_inverted_index.an | 50 |
| abstract_inverted_index.by | 3 |
| abstract_inverted_index.in | 75 |
| abstract_inverted_index.is | 9 |
| abstract_inverted_index.of | 58, 101, 126 |
| abstract_inverted_index.on | 31, 132 |
| abstract_inverted_index.or | 128 |
| abstract_inverted_index.to | 54, 115 |
| abstract_inverted_index.we | 67 |
| abstract_inverted_index.Our | 40 |
| abstract_inverted_index.The | 109 |
| abstract_inverted_index.and | 35, 93, 122 |
| abstract_inverted_index.for | 13, 37, 90 |
| abstract_inverted_index.our | 65 |
| abstract_inverted_index.the | 4, 56, 76, 80, 97, 102, 106, 112, 117, 133 |
| abstract_inverted_index.use | 68 |
| abstract_inverted_index.This | 18 |
| abstract_inverted_index.data | 34, 70 |
| abstract_inverted_index.each | 91 |
| abstract_inverted_index.from | 71, 96 |
| abstract_inverted_index.into | 105 |
| abstract_inverted_index.most | 118 |
| abstract_inverted_index.past | 32 |
| abstract_inverted_index.real | 69 |
| abstract_inverted_index.team | 28, 73, 120 |
| abstract_inverted_index.that | 24 |
| abstract_inverted_index.tool | 23 |
| abstract_inverted_index.with | 15, 49 |
| abstract_inverted_index.among | 130 |
| abstract_inverted_index.based | 30 |
| abstract_inverted_index.model | 48, 104 |
| abstract_inverted_index.paper | 19 |
| abstract_inverted_index.sport | 11 |
| abstract_inverted_index.team. | 62 |
| abstract_inverted_index.three | 86 |
| abstract_inverted_index.Doneck | 81 |
| abstract_inverted_index.Trier. | 83 |
| abstract_inverted_index.court. | 134 |
| abstract_inverted_index.linear | 52 |
| abstract_inverted_index.namely | 79 |
| abstract_inverted_index.player | 38, 92 |
| abstract_inverted_index.select | 116 |
| abstract_inverted_index.tool's | 113 |
| abstract_inverted_index.ability | 114 |
| abstract_inverted_index.integer | 51 |
| abstract_inverted_index.line-up | 57 |
| abstract_inverted_index.metrics | 36, 89 |
| abstract_inverted_index.optimal | 27 |
| abstract_inverted_index.players | 131 |
| abstract_inverted_index.problem | 53 |
| abstract_inverted_index.results | 110 |
| abstract_inverted_index.Bayesian | 46 |
| abstract_inverted_index.Dolphins | 82 |
| abstract_inverted_index.consider | 85 |
| abstract_inverted_index.designed | 12 |
| abstract_inverted_index.distinct | 87 |
| abstract_inverted_index.involves | 43 |
| abstract_inverted_index.line-ups | 29 |
| abstract_inverted_index.optimise | 55 |
| abstract_inverted_index.physical | 16 |
| abstract_inverted_index.presents | 20 |
| abstract_inverted_index.process. | 108 |
| abstract_inverted_index.proposed | 41 |
| abstract_inverted_index.suitable | 119 |
| abstract_inverted_index.approach, | 66 |
| abstract_inverted_index.calculate | 123 |
| abstract_inverted_index.combining | 44 |
| abstract_inverted_index.competing | 74 |
| abstract_inverted_index.posterior | 98, 124 |
| abstract_inverted_index.regulated | 2 |
| abstract_inverted_index.Basketball | 7 |
| abstract_inverted_index.Wheelchair | 0, 6 |
| abstract_inverted_index.basketball | 61 |
| abstract_inverted_index.determines | 26 |
| abstract_inverted_index.illustrate | 64 |
| abstract_inverted_index.predictive | 99 |
| abstract_inverted_index.wheelchair | 60 |
| abstract_inverted_index.Bundesliga, | 78 |
| abstract_inverted_index.Federation, | 8 |
| abstract_inverted_index.basketball, | 1 |
| abstract_inverted_index.data-driven | 22 |
| abstract_inverted_index.demonstrate | 111 |
| abstract_inverted_index.effectively | 25 |
| abstract_inverted_index.incorporate | 94 |
| abstract_inverted_index.individuals | 14 |
| abstract_inverted_index.methodology | 42 |
| abstract_inverted_index.performance | 33, 88 |
| abstract_inverted_index.uncertainty | 95 |
| abstract_inverted_index.compositions | 121 |
| abstract_inverted_index.distribution | 100 |
| abstract_inverted_index.longitudinal | 47, 103 |
| abstract_inverted_index.optimisation | 107 |
| abstract_inverted_index.International | 5 |
| abstract_inverted_index.compatibility | 127 |
| abstract_inverted_index.disabilities. | 17 |
| abstract_inverted_index.probabilities | 125 |
| abstract_inverted_index.effectiveness. | 39 |
| abstract_inverted_index.incompatibility | 129 |
| abstract_inverted_index.Rollstuhlbasketball | 77 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/4 |
| sustainable_development_goals[0].score | 0.699999988079071 |
| sustainable_development_goals[0].display_name | Quality Education |
| citation_normalized_percentile |