Selection of Trees for Thinning Using Machine Learning Algorithms and Competition Indices Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.3390/f16010065
In artificial forests, regular thinning is required to promote diameter growth for producing high-quality, large-diameter timber. However, selecting trees for thinning often relies on qualitative and subjective assessments by field workers. The purpose of this study was to develop a quantitative method for selecting trees for thinning by combining machine learning algorithms and competition indices. Our study site included the Pinus koraiensis area within a Kangwon National University research forest in the Republic of Korea. Data from a model development site were used for the basic crown classification model for Pinus koraiensis. The model was optimized by adjusting hyperparameters. Different algorithms, including Random Forest, XGBoost, and LightGBM (LGBM), were improved using Random Search. LGBM showed the highest accuracy of 71.6%. LGBM—in combination with the competition indices—was used to classify the crown class in the application site and select trees for thinning. Compared to the combination of Braathe and Martin-EK indices, the combination of LGBM and Hegyi index enabled the even distribution of the residual stand in the entire site after thinning. It lowered the distribution of hot spots, which represent competition. Thus, the combination of LGBM and Hegyi index was the most effective option to improve the spatial distribution of trees after thinning. Our findings can improve forest management by providing a quantitative and objective method for selecting trees for thinning.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/f16010065
- https://www.mdpi.com/1999-4907/16/1/65/pdf?version=1735806839
- OA Status
- gold
- Cited By
- 2
- References
- 41
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4405989484
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4405989484Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/f16010065Digital Object Identifier
- Title
-
Selection of Trees for Thinning Using Machine Learning Algorithms and Competition IndicesWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-01-02Full publication date if available
- Authors
-
Yong Kyu Lee, Jungsoo Lee, Sang-Kyun Han, Hyo-Vin Ji, Jin-Woo ParkList of authors in order
- Landing page
-
https://doi.org/10.3390/f16010065Publisher landing page
- PDF URL
-
https://www.mdpi.com/1999-4907/16/1/65/pdf?version=1735806839Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/1999-4907/16/1/65/pdf?version=1735806839Direct OA link when available
- Concepts
-
Thinning, Pinus koraiensis, Random forest, Hyperparameter, Computer science, Artificial intelligence, Machine learning, Competition (biology), Forestry, Forest management, Algorithm, Ecology, Geography, BiologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2Per-year citation counts (last 5 years)
- References (count)
-
41Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4405989484 |
|---|---|
| doi | https://doi.org/10.3390/f16010065 |
| ids.doi | https://doi.org/10.3390/f16010065 |
| ids.openalex | https://openalex.org/W4405989484 |
| fwci | 12.38897159 |
| type | article |
| title | Selection of Trees for Thinning Using Machine Learning Algorithms and Competition Indices |
| biblio.issue | 1 |
| biblio.volume | 16 |
| biblio.last_page | 65 |
| biblio.first_page | 65 |
| topics[0].id | https://openalex.org/T11880 |
| topics[0].field.id | https://openalex.org/fields/23 |
| topics[0].field.display_name | Environmental Science |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2309 |
| topics[0].subfield.display_name | Nature and Landscape Conservation |
| topics[0].display_name | Forest ecology and management |
| topics[1].id | https://openalex.org/T11164 |
| topics[1].field.id | https://openalex.org/fields/23 |
| topics[1].field.display_name | Environmental Science |
| topics[1].score | 0.9991999864578247 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2305 |
| topics[1].subfield.display_name | Environmental Engineering |
| topics[1].display_name | Remote Sensing and LiDAR Applications |
| topics[2].id | https://openalex.org/T12713 |
| topics[2].field.id | https://openalex.org/fields/11 |
| topics[2].field.display_name | Agricultural and Biological Sciences |
| topics[2].score | 0.9937999844551086 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1109 |
| topics[2].subfield.display_name | Insect Science |
| topics[2].display_name | Forest Ecology and Biodiversity Studies |
| is_xpac | False |
| apc_list.value | 2000 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2165 |
| apc_paid.value | 2000 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2165 |
| concepts[0].id | https://openalex.org/C2781353100 |
| concepts[0].level | 2 |
| concepts[0].score | 0.9375027418136597 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1266974 |
| concepts[0].display_name | Thinning |
| concepts[1].id | https://openalex.org/C2993286701 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6944564580917358 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q301636 |
| concepts[1].display_name | Pinus koraiensis |
| concepts[2].id | https://openalex.org/C169258074 |
| concepts[2].level | 2 |
| concepts[2].score | 0.666625440120697 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q245748 |
| concepts[2].display_name | Random forest |
| concepts[3].id | https://openalex.org/C8642999 |
| concepts[3].level | 2 |
| concepts[3].score | 0.576474666595459 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q4171168 |
| concepts[3].display_name | Hyperparameter |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.5728254318237305 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.5218597650527954 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C119857082 |
| concepts[6].level | 1 |
| concepts[6].score | 0.5123082399368286 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[6].display_name | Machine learning |
| concepts[7].id | https://openalex.org/C91306197 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5105081796646118 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q45767 |
| concepts[7].display_name | Competition (biology) |
| concepts[8].id | https://openalex.org/C97137747 |
| concepts[8].level | 1 |
| concepts[8].score | 0.469612181186676 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q38112 |
| concepts[8].display_name | Forestry |
| concepts[9].id | https://openalex.org/C28631016 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4218676686286926 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q372561 |
| concepts[9].display_name | Forest management |
| concepts[10].id | https://openalex.org/C11413529 |
| concepts[10].level | 1 |
| concepts[10].score | 0.4069361090660095 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[10].display_name | Algorithm |
| concepts[11].id | https://openalex.org/C18903297 |
| concepts[11].level | 1 |
| concepts[11].score | 0.11623582243919373 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7150 |
| concepts[11].display_name | Ecology |
| concepts[12].id | https://openalex.org/C205649164 |
| concepts[12].level | 0 |
| concepts[12].score | 0.11061999201774597 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[12].display_name | Geography |
| concepts[13].id | https://openalex.org/C86803240 |
| concepts[13].level | 0 |
| concepts[13].score | 0.06036379933357239 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[13].display_name | Biology |
| keywords[0].id | https://openalex.org/keywords/thinning |
| keywords[0].score | 0.9375027418136597 |
| keywords[0].display_name | Thinning |
| keywords[1].id | https://openalex.org/keywords/pinus-koraiensis |
| keywords[1].score | 0.6944564580917358 |
| keywords[1].display_name | Pinus koraiensis |
| keywords[2].id | https://openalex.org/keywords/random-forest |
| keywords[2].score | 0.666625440120697 |
| keywords[2].display_name | Random forest |
| keywords[3].id | https://openalex.org/keywords/hyperparameter |
| keywords[3].score | 0.576474666595459 |
| keywords[3].display_name | Hyperparameter |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.5728254318237305 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.5218597650527954 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/machine-learning |
| keywords[6].score | 0.5123082399368286 |
| keywords[6].display_name | Machine learning |
| keywords[7].id | https://openalex.org/keywords/competition |
| keywords[7].score | 0.5105081796646118 |
| keywords[7].display_name | Competition (biology) |
| keywords[8].id | https://openalex.org/keywords/forestry |
| keywords[8].score | 0.469612181186676 |
| keywords[8].display_name | Forestry |
| keywords[9].id | https://openalex.org/keywords/forest-management |
| keywords[9].score | 0.4218676686286926 |
| keywords[9].display_name | Forest management |
| keywords[10].id | https://openalex.org/keywords/algorithm |
| keywords[10].score | 0.4069361090660095 |
| keywords[10].display_name | Algorithm |
| keywords[11].id | https://openalex.org/keywords/ecology |
| keywords[11].score | 0.11623582243919373 |
| keywords[11].display_name | Ecology |
| keywords[12].id | https://openalex.org/keywords/geography |
| keywords[12].score | 0.11061999201774597 |
| keywords[12].display_name | Geography |
| keywords[13].id | https://openalex.org/keywords/biology |
| keywords[13].score | 0.06036379933357239 |
| keywords[13].display_name | Biology |
| language | en |
| locations[0].id | doi:10.3390/f16010065 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S71324801 |
| locations[0].source.issn | 1999-4907 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1999-4907 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Forests |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/1999-4907/16/1/65/pdf?version=1735806839 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Forests |
| locations[0].landing_page_url | https://doi.org/10.3390/f16010065 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5055364087 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-0741-0809 |
| authorships[0].author.display_name | Yong Kyu Lee |
| authorships[0].countries | KR |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I165507594 |
| authorships[0].affiliations[0].raw_affiliation_string | Division of Forest Sciences, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea |
| authorships[0].institutions[0].id | https://openalex.org/I165507594 |
| authorships[0].institutions[0].ror | https://ror.org/01mh5ph17 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I165507594 |
| authorships[0].institutions[0].country_code | KR |
| authorships[0].institutions[0].display_name | Kangwon National University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yong-Kyu Lee |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Division of Forest Sciences, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea |
| authorships[1].author.id | https://openalex.org/A5100776322 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-3807-4377 |
| authorships[1].author.display_name | Jungsoo Lee |
| authorships[1].countries | KR |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I165507594 |
| authorships[1].affiliations[0].raw_affiliation_string | Division of Forest Sciences, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea |
| authorships[1].institutions[0].id | https://openalex.org/I165507594 |
| authorships[1].institutions[0].ror | https://ror.org/01mh5ph17 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I165507594 |
| authorships[1].institutions[0].country_code | KR |
| authorships[1].institutions[0].display_name | Kangwon National University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jung-Soo Lee |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Division of Forest Sciences, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea |
| authorships[2].author.id | https://openalex.org/A5055747155 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-4037-1570 |
| authorships[2].author.display_name | Sang-Kyun Han |
| authorships[2].countries | KR |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I165507594 |
| authorships[2].affiliations[0].raw_affiliation_string | Division of Forest Sciences, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea |
| authorships[2].institutions[0].id | https://openalex.org/I165507594 |
| authorships[2].institutions[0].ror | https://ror.org/01mh5ph17 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I165507594 |
| authorships[2].institutions[0].country_code | KR |
| authorships[2].institutions[0].display_name | Kangwon National University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Sang-Kyun Han |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Division of Forest Sciences, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea |
| authorships[3].author.id | https://openalex.org/A5107667020 |
| authorships[3].author.orcid | https://orcid.org/0009-0000-8068-9140 |
| authorships[3].author.display_name | Hyo-Vin Ji |
| authorships[3].countries | KR |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I165507594 |
| authorships[3].affiliations[0].raw_affiliation_string | Division of Forest Sciences, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea |
| authorships[3].institutions[0].id | https://openalex.org/I165507594 |
| authorships[3].institutions[0].ror | https://ror.org/01mh5ph17 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I165507594 |
| authorships[3].institutions[0].country_code | KR |
| authorships[3].institutions[0].display_name | Kangwon National University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Hyo-Vin Ji |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Division of Forest Sciences, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea |
| authorships[4].author.id | https://openalex.org/A5034097374 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-6004-5866 |
| authorships[4].author.display_name | Jin-Woo Park |
| authorships[4].countries | KR |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I165507594 |
| authorships[4].affiliations[0].raw_affiliation_string | Division of Forest Sciences, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea |
| authorships[4].institutions[0].id | https://openalex.org/I165507594 |
| authorships[4].institutions[0].ror | https://ror.org/01mh5ph17 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I165507594 |
| authorships[4].institutions[0].country_code | KR |
| authorships[4].institutions[0].display_name | Kangwon National University |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Jin-Woo Park |
| authorships[4].is_corresponding | True |
| authorships[4].raw_affiliation_strings | Division of Forest Sciences, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/1999-4907/16/1/65/pdf?version=1735806839 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Selection of Trees for Thinning Using Machine Learning Algorithms and Competition Indices |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11880 |
| primary_topic.field.id | https://openalex.org/fields/23 |
| primary_topic.field.display_name | Environmental Science |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2309 |
| primary_topic.subfield.display_name | Nature and Landscape Conservation |
| primary_topic.display_name | Forest ecology and management |
| related_works | https://openalex.org/W2388203127, https://openalex.org/W2357280244, https://openalex.org/W4283836740, https://openalex.org/W2389155794, https://openalex.org/W2374806551, https://openalex.org/W4386295066, https://openalex.org/W4396679425, https://openalex.org/W2978317526, https://openalex.org/W2620317666, https://openalex.org/W2369477437 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| locations_count | 1 |
| best_oa_location.id | doi:10.3390/f16010065 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S71324801 |
| best_oa_location.source.issn | 1999-4907 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1999-4907 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Forests |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/1999-4907/16/1/65/pdf?version=1735806839 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Forests |
| best_oa_location.landing_page_url | https://doi.org/10.3390/f16010065 |
| primary_location.id | doi:10.3390/f16010065 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S71324801 |
| primary_location.source.issn | 1999-4907 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1999-4907 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Forests |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/1999-4907/16/1/65/pdf?version=1735806839 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Forests |
| primary_location.landing_page_url | https://doi.org/10.3390/f16010065 |
| publication_date | 2025-01-02 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W6777895791, https://openalex.org/W3114925657, https://openalex.org/W6600774671, https://openalex.org/W2911906180, https://openalex.org/W2021208831, https://openalex.org/W6723485205, https://openalex.org/W2010975929, https://openalex.org/W6696194290, https://openalex.org/W2000468509, https://openalex.org/W2039931899, https://openalex.org/W4386832735, https://openalex.org/W2395582955, https://openalex.org/W2942137712, https://openalex.org/W2261059368, https://openalex.org/W2295598076, https://openalex.org/W2938102982, https://openalex.org/W6745609711, https://openalex.org/W3004933906, https://openalex.org/W2911964244, https://openalex.org/W3155356857, https://openalex.org/W3026063078, https://openalex.org/W6787657963, https://openalex.org/W2033600814, https://openalex.org/W2043725578, https://openalex.org/W2978631110, https://openalex.org/W2801244438, https://openalex.org/W1967137980, https://openalex.org/W6734116325, https://openalex.org/W2023930458, https://openalex.org/W4285186172, https://openalex.org/W2971616138, https://openalex.org/W4378085579, https://openalex.org/W2034829397, https://openalex.org/W3118636633, https://openalex.org/W2768348081, https://openalex.org/W18798787, https://openalex.org/W2590764202, https://openalex.org/W3027477918, https://openalex.org/W2289639857, https://openalex.org/W3101083045, https://openalex.org/W2492607155 |
| referenced_works_count | 41 |
| abstract_inverted_index.a | 39, 64, 77, 211 |
| abstract_inverted_index.In | 0 |
| abstract_inverted_index.It | 171 |
| abstract_inverted_index.by | 28, 47, 96, 209 |
| abstract_inverted_index.in | 70, 132, 165 |
| abstract_inverted_index.is | 5 |
| abstract_inverted_index.of | 33, 73, 118, 145, 152, 161, 175, 184, 199 |
| abstract_inverted_index.on | 23 |
| abstract_inverted_index.to | 7, 37, 127, 142, 194 |
| abstract_inverted_index.Our | 55, 203 |
| abstract_inverted_index.The | 31, 92 |
| abstract_inverted_index.and | 25, 52, 105, 136, 147, 154, 186, 213 |
| abstract_inverted_index.can | 205 |
| abstract_inverted_index.for | 11, 19, 42, 45, 83, 89, 139, 216, 219 |
| abstract_inverted_index.hot | 176 |
| abstract_inverted_index.the | 59, 71, 84, 115, 123, 129, 133, 143, 150, 158, 162, 166, 173, 182, 190, 196 |
| abstract_inverted_index.was | 36, 94, 189 |
| abstract_inverted_index.Data | 75 |
| abstract_inverted_index.LGBM | 113, 153, 185 |
| abstract_inverted_index.area | 62 |
| abstract_inverted_index.even | 159 |
| abstract_inverted_index.from | 76 |
| abstract_inverted_index.most | 191 |
| abstract_inverted_index.site | 57, 80, 135, 168 |
| abstract_inverted_index.this | 34 |
| abstract_inverted_index.used | 82, 126 |
| abstract_inverted_index.were | 81, 108 |
| abstract_inverted_index.with | 122 |
| abstract_inverted_index.Hegyi | 155, 187 |
| abstract_inverted_index.Pinus | 60, 90 |
| abstract_inverted_index.Thus, | 181 |
| abstract_inverted_index.after | 169, 201 |
| abstract_inverted_index.basic | 85 |
| abstract_inverted_index.class | 131 |
| abstract_inverted_index.crown | 86, 130 |
| abstract_inverted_index.field | 29 |
| abstract_inverted_index.index | 156, 188 |
| abstract_inverted_index.model | 78, 88, 93 |
| abstract_inverted_index.often | 21 |
| abstract_inverted_index.stand | 164 |
| abstract_inverted_index.study | 35, 56 |
| abstract_inverted_index.trees | 18, 44, 138, 200, 218 |
| abstract_inverted_index.using | 110 |
| abstract_inverted_index.which | 178 |
| abstract_inverted_index.71.6%. | 119 |
| abstract_inverted_index.Korea. | 74 |
| abstract_inverted_index.Random | 102, 111 |
| abstract_inverted_index.entire | 167 |
| abstract_inverted_index.forest | 69, 207 |
| abstract_inverted_index.growth | 10 |
| abstract_inverted_index.method | 41, 215 |
| abstract_inverted_index.option | 193 |
| abstract_inverted_index.relies | 22 |
| abstract_inverted_index.select | 137 |
| abstract_inverted_index.showed | 114 |
| abstract_inverted_index.spots, | 177 |
| abstract_inverted_index.within | 63 |
| abstract_inverted_index.(LGBM), | 107 |
| abstract_inverted_index.Braathe | 146 |
| abstract_inverted_index.Forest, | 103 |
| abstract_inverted_index.Kangwon | 65 |
| abstract_inverted_index.Search. | 112 |
| abstract_inverted_index.develop | 38 |
| abstract_inverted_index.enabled | 157 |
| abstract_inverted_index.highest | 116 |
| abstract_inverted_index.improve | 195, 206 |
| abstract_inverted_index.lowered | 172 |
| abstract_inverted_index.machine | 49 |
| abstract_inverted_index.promote | 8 |
| abstract_inverted_index.purpose | 32 |
| abstract_inverted_index.regular | 3 |
| abstract_inverted_index.spatial | 197 |
| abstract_inverted_index.timber. | 15 |
| abstract_inverted_index.Compared | 141 |
| abstract_inverted_index.However, | 16 |
| abstract_inverted_index.LightGBM | 106 |
| abstract_inverted_index.National | 66 |
| abstract_inverted_index.Republic | 72 |
| abstract_inverted_index.XGBoost, | 104 |
| abstract_inverted_index.accuracy | 117 |
| abstract_inverted_index.classify | 128 |
| abstract_inverted_index.diameter | 9 |
| abstract_inverted_index.findings | 204 |
| abstract_inverted_index.forests, | 2 |
| abstract_inverted_index.improved | 109 |
| abstract_inverted_index.included | 58 |
| abstract_inverted_index.indices, | 149 |
| abstract_inverted_index.indices. | 54 |
| abstract_inverted_index.learning | 50 |
| abstract_inverted_index.required | 6 |
| abstract_inverted_index.research | 68 |
| abstract_inverted_index.residual | 163 |
| abstract_inverted_index.thinning | 4, 20, 46 |
| abstract_inverted_index.workers. | 30 |
| abstract_inverted_index.Different | 99 |
| abstract_inverted_index.LGBM—in | 120 |
| abstract_inverted_index.Martin-EK | 148 |
| abstract_inverted_index.adjusting | 97 |
| abstract_inverted_index.combining | 48 |
| abstract_inverted_index.effective | 192 |
| abstract_inverted_index.including | 101 |
| abstract_inverted_index.objective | 214 |
| abstract_inverted_index.optimized | 95 |
| abstract_inverted_index.producing | 12 |
| abstract_inverted_index.providing | 210 |
| abstract_inverted_index.represent | 179 |
| abstract_inverted_index.selecting | 17, 43, 217 |
| abstract_inverted_index.thinning. | 140, 170, 202, 220 |
| abstract_inverted_index.University | 67 |
| abstract_inverted_index.algorithms | 51 |
| abstract_inverted_index.artificial | 1 |
| abstract_inverted_index.koraiensis | 61 |
| abstract_inverted_index.management | 208 |
| abstract_inverted_index.subjective | 26 |
| abstract_inverted_index.algorithms, | 100 |
| abstract_inverted_index.application | 134 |
| abstract_inverted_index.assessments | 27 |
| abstract_inverted_index.combination | 121, 144, 151, 183 |
| abstract_inverted_index.competition | 53, 124 |
| abstract_inverted_index.development | 79 |
| abstract_inverted_index.koraiensis. | 91 |
| abstract_inverted_index.qualitative | 24 |
| abstract_inverted_index.competition. | 180 |
| abstract_inverted_index.distribution | 160, 174, 198 |
| abstract_inverted_index.quantitative | 40, 212 |
| abstract_inverted_index.high-quality, | 13 |
| abstract_inverted_index.indices—was | 125 |
| abstract_inverted_index.classification | 87 |
| abstract_inverted_index.large-diameter | 14 |
| abstract_inverted_index.hyperparameters. | 98 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 95 |
| corresponding_author_ids | https://openalex.org/A5034097374 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| corresponding_institution_ids | https://openalex.org/I165507594 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/15 |
| sustainable_development_goals[0].score | 0.7300000190734863 |
| sustainable_development_goals[0].display_name | Life in Land |
| citation_normalized_percentile.value | 0.94123213 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |