Selective classification using a robust meta-learning approach Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2212.05987
Predictive uncertainty-a model's self awareness regarding its accuracy on an input-is key for both building robust models via training interventions and for test-time applications such as selective classification. We propose a novel instance-conditioned reweighting approach that captures predictive uncertainty using an auxiliary network and unifies these train- and test-time applications. The auxiliary network is trained using a meta-objective in a bilevel optimization framework. A key contribution of our proposal is the meta-objective of minimizing the dropout variance, an approximation of Bayesian Predictive uncertainty. We show in controlled experiments that we effectively capture the diverse specific notions of uncertainty through this meta-objective, while previous approaches only capture certain aspects. These results translate to significant gains in real-world settings-selective classification, label noise, domain adaptation, calibration-and across datasets-Imagenet, Cifar100, diabetic retinopathy, Camelyon, WILDs, Imagenet-C,-A,-R, Clothing1M, etc. For Diabetic Retinopathy, we see upto 3.4%/3.3% accuracy and AUC gains over SOTA in selective classification. We also improve upon large-scale pretrained models such as PLEX.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2212.05987
- https://arxiv.org/pdf/2212.05987
- OA Status
- green
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4311431950
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4311431950Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2212.05987Digital Object Identifier
- Title
-
Selective classification using a robust meta-learning approachWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-12-12Full publication date if available
- Authors
-
Nishant Jain, Pradeep ShenoyList of authors in order
- Landing page
-
https://arxiv.org/abs/2212.05987Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2212.05987Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2212.05987Direct OA link when available
- Concepts
-
Computer science, Machine learning, Artificial intelligence, Bayesian optimization, Key (lock), Dropout (neural networks), Bayesian probability, Calibration, Mathematics, Statistics, Computer securityTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2023: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4311431950 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2212.05987 |
| ids.doi | https://doi.org/10.48550/arxiv.2212.05987 |
| ids.openalex | https://openalex.org/W4311431950 |
| fwci | |
| type | preprint |
| title | Selective classification using a robust meta-learning approach |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11307 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9887999892234802 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Domain Adaptation and Few-Shot Learning |
| topics[1].id | https://openalex.org/T13702 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9865000247955322 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Machine Learning in Healthcare |
| topics[2].id | https://openalex.org/T12535 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9843000173568726 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Machine Learning and Data Classification |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7375088930130005 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C119857082 |
| concepts[1].level | 1 |
| concepts[1].score | 0.664145827293396 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[1].display_name | Machine learning |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.6263826489448547 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C2778049539 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5388448238372803 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q17002908 |
| concepts[3].display_name | Bayesian optimization |
| concepts[4].id | https://openalex.org/C26517878 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4774375855922699 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q228039 |
| concepts[4].display_name | Key (lock) |
| concepts[5].id | https://openalex.org/C2776145597 |
| concepts[5].level | 2 |
| concepts[5].score | 0.449973464012146 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q25339462 |
| concepts[5].display_name | Dropout (neural networks) |
| concepts[6].id | https://openalex.org/C107673813 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4260331094264984 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q812534 |
| concepts[6].display_name | Bayesian probability |
| concepts[7].id | https://openalex.org/C165838908 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4249493181705475 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q736777 |
| concepts[7].display_name | Calibration |
| concepts[8].id | https://openalex.org/C33923547 |
| concepts[8].level | 0 |
| concepts[8].score | 0.14276617765426636 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[8].display_name | Mathematics |
| concepts[9].id | https://openalex.org/C105795698 |
| concepts[9].level | 1 |
| concepts[9].score | 0.09250068664550781 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[9].display_name | Statistics |
| concepts[10].id | https://openalex.org/C38652104 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q3510521 |
| concepts[10].display_name | Computer security |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7375088930130005 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/machine-learning |
| keywords[1].score | 0.664145827293396 |
| keywords[1].display_name | Machine learning |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.6263826489448547 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/bayesian-optimization |
| keywords[3].score | 0.5388448238372803 |
| keywords[3].display_name | Bayesian optimization |
| keywords[4].id | https://openalex.org/keywords/key |
| keywords[4].score | 0.4774375855922699 |
| keywords[4].display_name | Key (lock) |
| keywords[5].id | https://openalex.org/keywords/dropout |
| keywords[5].score | 0.449973464012146 |
| keywords[5].display_name | Dropout (neural networks) |
| keywords[6].id | https://openalex.org/keywords/bayesian-probability |
| keywords[6].score | 0.4260331094264984 |
| keywords[6].display_name | Bayesian probability |
| keywords[7].id | https://openalex.org/keywords/calibration |
| keywords[7].score | 0.4249493181705475 |
| keywords[7].display_name | Calibration |
| keywords[8].id | https://openalex.org/keywords/mathematics |
| keywords[8].score | 0.14276617765426636 |
| keywords[8].display_name | Mathematics |
| keywords[9].id | https://openalex.org/keywords/statistics |
| keywords[9].score | 0.09250068664550781 |
| keywords[9].display_name | Statistics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2212.05987 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2212.05987 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2212.05987 |
| locations[1].id | doi:10.48550/arxiv.2212.05987 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2212.05987 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5073570615 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-3260-2543 |
| authorships[0].author.display_name | Nishant Jain |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jain, Nishant |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5110759892 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Pradeep Shenoy |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Shenoy, Pradeep |
| authorships[1].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2212.05987 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Selective classification using a robust meta-learning approach |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11307 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9887999892234802 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Domain Adaptation and Few-Shot Learning |
| related_works | https://openalex.org/W3082178636, https://openalex.org/W2782041652, https://openalex.org/W2612657834, https://openalex.org/W2392157706, https://openalex.org/W2599192953, https://openalex.org/W2952088488, https://openalex.org/W4225691210, https://openalex.org/W2481230473, https://openalex.org/W2792147139, https://openalex.org/W3171196943 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2023 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2212.05987 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2212.05987 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2212.05987 |
| primary_location.id | pmh:oai:arXiv.org:2212.05987 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2212.05987 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2212.05987 |
| publication_date | 2022-12-12 |
| publication_year | 2022 |
| referenced_works_count | 0 |
| abstract_inverted_index.A | 63 |
| abstract_inverted_index.a | 30, 56, 59 |
| abstract_inverted_index.We | 28, 83, 149 |
| abstract_inverted_index.an | 9, 40, 77 |
| abstract_inverted_index.as | 25, 157 |
| abstract_inverted_index.in | 58, 85, 114, 146 |
| abstract_inverted_index.is | 53, 69 |
| abstract_inverted_index.of | 66, 72, 79, 96 |
| abstract_inverted_index.on | 8 |
| abstract_inverted_index.to | 111 |
| abstract_inverted_index.we | 89, 136 |
| abstract_inverted_index.AUC | 142 |
| abstract_inverted_index.For | 133 |
| abstract_inverted_index.The | 50 |
| abstract_inverted_index.and | 20, 43, 47, 141 |
| abstract_inverted_index.for | 12, 21 |
| abstract_inverted_index.its | 6 |
| abstract_inverted_index.key | 11, 64 |
| abstract_inverted_index.our | 67 |
| abstract_inverted_index.see | 137 |
| abstract_inverted_index.the | 70, 74, 92 |
| abstract_inverted_index.via | 17 |
| abstract_inverted_index.SOTA | 145 |
| abstract_inverted_index.also | 150 |
| abstract_inverted_index.both | 13 |
| abstract_inverted_index.etc. | 132 |
| abstract_inverted_index.only | 104 |
| abstract_inverted_index.over | 144 |
| abstract_inverted_index.self | 3 |
| abstract_inverted_index.show | 84 |
| abstract_inverted_index.such | 24, 156 |
| abstract_inverted_index.that | 35, 88 |
| abstract_inverted_index.this | 99 |
| abstract_inverted_index.upon | 152 |
| abstract_inverted_index.upto | 138 |
| abstract_inverted_index.PLEX. | 158 |
| abstract_inverted_index.These | 108 |
| abstract_inverted_index.gains | 113, 143 |
| abstract_inverted_index.label | 118 |
| abstract_inverted_index.novel | 31 |
| abstract_inverted_index.these | 45 |
| abstract_inverted_index.using | 39, 55 |
| abstract_inverted_index.while | 101 |
| abstract_inverted_index.WILDs, | 129 |
| abstract_inverted_index.across | 123 |
| abstract_inverted_index.domain | 120 |
| abstract_inverted_index.models | 16, 155 |
| abstract_inverted_index.noise, | 119 |
| abstract_inverted_index.robust | 15 |
| abstract_inverted_index.train- | 46 |
| abstract_inverted_index.bilevel | 60 |
| abstract_inverted_index.capture | 91, 105 |
| abstract_inverted_index.certain | 106 |
| abstract_inverted_index.diverse | 93 |
| abstract_inverted_index.dropout | 75 |
| abstract_inverted_index.improve | 151 |
| abstract_inverted_index.model's | 2 |
| abstract_inverted_index.network | 42, 52 |
| abstract_inverted_index.notions | 95 |
| abstract_inverted_index.propose | 29 |
| abstract_inverted_index.results | 109 |
| abstract_inverted_index.through | 98 |
| abstract_inverted_index.trained | 54 |
| abstract_inverted_index.unifies | 44 |
| abstract_inverted_index.Bayesian | 80 |
| abstract_inverted_index.Diabetic | 134 |
| abstract_inverted_index.accuracy | 7, 140 |
| abstract_inverted_index.approach | 34 |
| abstract_inverted_index.aspects. | 107 |
| abstract_inverted_index.building | 14 |
| abstract_inverted_index.captures | 36 |
| abstract_inverted_index.diabetic | 126 |
| abstract_inverted_index.input-is | 10 |
| abstract_inverted_index.previous | 102 |
| abstract_inverted_index.proposal | 68 |
| abstract_inverted_index.specific | 94 |
| abstract_inverted_index.training | 18 |
| abstract_inverted_index.3.4%/3.3% | 139 |
| abstract_inverted_index.Camelyon, | 128 |
| abstract_inverted_index.Cifar100, | 125 |
| abstract_inverted_index.auxiliary | 41, 51 |
| abstract_inverted_index.awareness | 4 |
| abstract_inverted_index.regarding | 5 |
| abstract_inverted_index.selective | 26, 147 |
| abstract_inverted_index.test-time | 22, 48 |
| abstract_inverted_index.translate | 110 |
| abstract_inverted_index.variance, | 76 |
| abstract_inverted_index.Predictive | 0, 81 |
| abstract_inverted_index.approaches | 103 |
| abstract_inverted_index.controlled | 86 |
| abstract_inverted_index.framework. | 62 |
| abstract_inverted_index.minimizing | 73 |
| abstract_inverted_index.predictive | 37 |
| abstract_inverted_index.pretrained | 154 |
| abstract_inverted_index.real-world | 115 |
| abstract_inverted_index.Clothing1M, | 131 |
| abstract_inverted_index.adaptation, | 121 |
| abstract_inverted_index.effectively | 90 |
| abstract_inverted_index.experiments | 87 |
| abstract_inverted_index.large-scale | 153 |
| abstract_inverted_index.reweighting | 33 |
| abstract_inverted_index.significant | 112 |
| abstract_inverted_index.uncertainty | 38, 97 |
| abstract_inverted_index.Retinopathy, | 135 |
| abstract_inverted_index.applications | 23 |
| abstract_inverted_index.contribution | 65 |
| abstract_inverted_index.optimization | 61 |
| abstract_inverted_index.retinopathy, | 127 |
| abstract_inverted_index.uncertainty. | 82 |
| abstract_inverted_index.applications. | 49 |
| abstract_inverted_index.approximation | 78 |
| abstract_inverted_index.interventions | 19 |
| abstract_inverted_index.uncertainty-a | 1 |
| abstract_inverted_index.meta-objective | 57, 71 |
| abstract_inverted_index.calibration-and | 122 |
| abstract_inverted_index.classification, | 117 |
| abstract_inverted_index.classification. | 27, 148 |
| abstract_inverted_index.meta-objective, | 100 |
| abstract_inverted_index.Imagenet-C,-A,-R, | 130 |
| abstract_inverted_index.datasets-Imagenet, | 124 |
| abstract_inverted_index.settings-selective | 116 |
| abstract_inverted_index.instance-conditioned | 32 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile |