Selective Structured State-Spaces for Long-Form Video Understanding Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2303.14526
Effective modeling of complex spatiotemporal dependencies in long-form videos remains an open problem. The recently proposed Structured State-Space Sequence (S4) model with its linear complexity offers a promising direction in this space. However, we demonstrate that treating all image-tokens equally as done by S4 model can adversely affect its efficiency and accuracy. To address this limitation, we present a novel Selective S4 (i.e., S5) model that employs a lightweight mask generator to adaptively select informative image tokens resulting in more efficient and accurate modeling of long-term spatiotemporal dependencies in videos. Unlike previous mask-based token reduction methods used in transformers, our S5 model avoids the dense self-attention calculation by making use of the guidance of the momentum-updated S4 model. This enables our model to efficiently discard less informative tokens and adapt to various long-form video understanding tasks more effectively. However, as is the case for most token reduction methods, the informative image tokens could be dropped incorrectly. To improve the robustness and the temporal horizon of our model, we propose a novel long-short masked contrastive learning (LSMCL) approach that enables our model to predict longer temporal context using shorter input videos. We present extensive comparative results using three challenging long-form video understanding datasets (LVU, COIN and Breakfast), demonstrating that our approach consistently outperforms the previous state-of-the-art S4 model by up to 9.6% accuracy while reducing its memory footprint by 23%.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2303.14526
- https://arxiv.org/pdf/2303.14526
- OA Status
- green
- Cited By
- 3
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4361193183
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4361193183Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2303.14526Digital Object Identifier
- Title
-
Selective Structured State-Spaces for Long-Form Video UnderstandingWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-03-25Full publication date if available
- Authors
-
Jue Wang, Wentao Zhu, Pichao Wang, Xiang Yu, Linda Liu, Mohamed Omar, Roszilah HamidList of authors in order
- Landing page
-
https://arxiv.org/abs/2303.14526Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2303.14526Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2303.14526Direct OA link when available
- Concepts
-
Computer science, Security token, Robustness (evolution), Artificial intelligence, Memory footprint, Computer vision, Machine learning, Pattern recognition (psychology), Biochemistry, Gene, Chemistry, Operating system, Computer securityTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
3Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2, 2024: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4361193183 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2303.14526 |
| ids.doi | https://doi.org/10.48550/arxiv.2303.14526 |
| ids.openalex | https://openalex.org/W4361193183 |
| fwci | |
| type | preprint |
| title | Selective Structured State-Spaces for Long-Form Video Understanding |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11714 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9916999936103821 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Multimodal Machine Learning Applications |
| topics[1].id | https://openalex.org/T10627 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9890999794006348 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Advanced Image and Video Retrieval Techniques |
| topics[2].id | https://openalex.org/T10812 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9873999953269958 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Human Pose and Action Recognition |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8190096616744995 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C48145219 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7777024507522583 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1335365 |
| concepts[1].display_name | Security token |
| concepts[2].id | https://openalex.org/C63479239 |
| concepts[2].level | 3 |
| concepts[2].score | 0.6377301812171936 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q7353546 |
| concepts[2].display_name | Robustness (evolution) |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5640653967857361 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C74912251 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5099500417709351 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q6815727 |
| concepts[4].display_name | Memory footprint |
| concepts[5].id | https://openalex.org/C31972630 |
| concepts[5].level | 1 |
| concepts[5].score | 0.3788982331752777 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[5].display_name | Computer vision |
| concepts[6].id | https://openalex.org/C119857082 |
| concepts[6].level | 1 |
| concepts[6].score | 0.37289655208587646 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[6].display_name | Machine learning |
| concepts[7].id | https://openalex.org/C153180895 |
| concepts[7].level | 2 |
| concepts[7].score | 0.3645690083503723 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[7].display_name | Pattern recognition (psychology) |
| concepts[8].id | https://openalex.org/C55493867 |
| concepts[8].level | 1 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7094 |
| concepts[8].display_name | Biochemistry |
| concepts[9].id | https://openalex.org/C104317684 |
| concepts[9].level | 2 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[9].display_name | Gene |
| concepts[10].id | https://openalex.org/C185592680 |
| concepts[10].level | 0 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[10].display_name | Chemistry |
| concepts[11].id | https://openalex.org/C111919701 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[11].display_name | Operating system |
| concepts[12].id | https://openalex.org/C38652104 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q3510521 |
| concepts[12].display_name | Computer security |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.8190096616744995 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/security-token |
| keywords[1].score | 0.7777024507522583 |
| keywords[1].display_name | Security token |
| keywords[2].id | https://openalex.org/keywords/robustness |
| keywords[2].score | 0.6377301812171936 |
| keywords[2].display_name | Robustness (evolution) |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.5640653967857361 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/memory-footprint |
| keywords[4].score | 0.5099500417709351 |
| keywords[4].display_name | Memory footprint |
| keywords[5].id | https://openalex.org/keywords/computer-vision |
| keywords[5].score | 0.3788982331752777 |
| keywords[5].display_name | Computer vision |
| keywords[6].id | https://openalex.org/keywords/machine-learning |
| keywords[6].score | 0.37289655208587646 |
| keywords[6].display_name | Machine learning |
| keywords[7].id | https://openalex.org/keywords/pattern-recognition |
| keywords[7].score | 0.3645690083503723 |
| keywords[7].display_name | Pattern recognition (psychology) |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2303.14526 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | https://arxiv.org/pdf/2303.14526 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2303.14526 |
| locations[1].id | doi:10.48550/arxiv.2303.14526 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2303.14526 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5100440604 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-3641-3136 |
| authorships[0].author.display_name | Jue Wang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Wang, Jue |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5031854562 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-9290-1778 |
| authorships[1].author.display_name | Wentao Zhu |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Zhu, Wentao |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5042680345 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-1430-0237 |
| authorships[2].author.display_name | Pichao Wang |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Wang, Pichao |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5100321699 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-2765-2749 |
| authorships[3].author.display_name | Xiang Yu |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Yu, Xiang |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5031896207 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-3687-9291 |
| authorships[4].author.display_name | Linda Liu |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Liu, Linda |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5101736497 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-9550-9840 |
| authorships[5].author.display_name | Mohamed Omar |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Omar, Mohamed |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5012139103 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-4617-970X |
| authorships[6].author.display_name | Roszilah Hamid |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Hamid, Raffay |
| authorships[6].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2303.14526 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Selective Structured State-Spaces for Long-Form Video Understanding |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11714 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9916999936103821 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Multimodal Machine Learning Applications |
| related_works | https://openalex.org/W4388335561, https://openalex.org/W2970530566, https://openalex.org/W4288261899, https://openalex.org/W4307309205, https://openalex.org/W2967478618, https://openalex.org/W4385009901, https://openalex.org/W4385572700, https://openalex.org/W2997152889, https://openalex.org/W4387768015, https://openalex.org/W4285141722 |
| cited_by_count | 3 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2303.14526 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2303.14526 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2303.14526 |
| primary_location.id | pmh:oai:arXiv.org:2303.14526 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | https://arxiv.org/pdf/2303.14526 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2303.14526 |
| publication_date | 2023-03-25 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 26, 58, 67, 169 |
| abstract_inverted_index.S4 | 43, 61, 116, 215 |
| abstract_inverted_index.S5 | 100 |
| abstract_inverted_index.To | 52, 156 |
| abstract_inverted_index.We | 190 |
| abstract_inverted_index.an | 10 |
| abstract_inverted_index.as | 40, 139 |
| abstract_inverted_index.be | 153 |
| abstract_inverted_index.by | 42, 107, 217, 227 |
| abstract_inverted_index.in | 6, 29, 78, 88, 97 |
| abstract_inverted_index.is | 140 |
| abstract_inverted_index.of | 2, 84, 110, 113, 164 |
| abstract_inverted_index.to | 71, 122, 130, 181, 219 |
| abstract_inverted_index.up | 218 |
| abstract_inverted_index.we | 33, 56, 167 |
| abstract_inverted_index.S5) | 63 |
| abstract_inverted_index.The | 13 |
| abstract_inverted_index.all | 37 |
| abstract_inverted_index.and | 50, 81, 128, 160, 204 |
| abstract_inverted_index.can | 45 |
| abstract_inverted_index.for | 143 |
| abstract_inverted_index.its | 22, 48, 224 |
| abstract_inverted_index.our | 99, 120, 165, 179, 208 |
| abstract_inverted_index.the | 103, 111, 114, 141, 148, 158, 161, 212 |
| abstract_inverted_index.use | 109 |
| abstract_inverted_index.(S4) | 19 |
| abstract_inverted_index.23%. | 228 |
| abstract_inverted_index.9.6% | 220 |
| abstract_inverted_index.COIN | 203 |
| abstract_inverted_index.This | 118 |
| abstract_inverted_index.case | 142 |
| abstract_inverted_index.done | 41 |
| abstract_inverted_index.less | 125 |
| abstract_inverted_index.mask | 69 |
| abstract_inverted_index.more | 79, 136 |
| abstract_inverted_index.most | 144 |
| abstract_inverted_index.open | 11 |
| abstract_inverted_index.that | 35, 65, 177, 207 |
| abstract_inverted_index.this | 30, 54 |
| abstract_inverted_index.used | 96 |
| abstract_inverted_index.with | 21 |
| abstract_inverted_index.(LVU, | 202 |
| abstract_inverted_index.adapt | 129 |
| abstract_inverted_index.could | 152 |
| abstract_inverted_index.dense | 104 |
| abstract_inverted_index.image | 75, 150 |
| abstract_inverted_index.input | 188 |
| abstract_inverted_index.model | 20, 44, 64, 101, 121, 180, 216 |
| abstract_inverted_index.novel | 59, 170 |
| abstract_inverted_index.tasks | 135 |
| abstract_inverted_index.three | 196 |
| abstract_inverted_index.token | 93, 145 |
| abstract_inverted_index.using | 186, 195 |
| abstract_inverted_index.video | 133, 199 |
| abstract_inverted_index.while | 222 |
| abstract_inverted_index.(i.e., | 62 |
| abstract_inverted_index.Unlike | 90 |
| abstract_inverted_index.affect | 47 |
| abstract_inverted_index.avoids | 102 |
| abstract_inverted_index.linear | 23 |
| abstract_inverted_index.longer | 183 |
| abstract_inverted_index.making | 108 |
| abstract_inverted_index.masked | 172 |
| abstract_inverted_index.memory | 225 |
| abstract_inverted_index.model, | 166 |
| abstract_inverted_index.model. | 117 |
| abstract_inverted_index.offers | 25 |
| abstract_inverted_index.select | 73 |
| abstract_inverted_index.space. | 31 |
| abstract_inverted_index.tokens | 76, 127, 151 |
| abstract_inverted_index.videos | 8 |
| abstract_inverted_index.(LSMCL) | 175 |
| abstract_inverted_index.address | 53 |
| abstract_inverted_index.complex | 3 |
| abstract_inverted_index.context | 185 |
| abstract_inverted_index.discard | 124 |
| abstract_inverted_index.dropped | 154 |
| abstract_inverted_index.employs | 66 |
| abstract_inverted_index.enables | 119, 178 |
| abstract_inverted_index.equally | 39 |
| abstract_inverted_index.horizon | 163 |
| abstract_inverted_index.improve | 157 |
| abstract_inverted_index.methods | 95 |
| abstract_inverted_index.predict | 182 |
| abstract_inverted_index.present | 57, 191 |
| abstract_inverted_index.propose | 168 |
| abstract_inverted_index.remains | 9 |
| abstract_inverted_index.results | 194 |
| abstract_inverted_index.shorter | 187 |
| abstract_inverted_index.various | 131 |
| abstract_inverted_index.videos. | 89, 189 |
| abstract_inverted_index.However, | 32, 138 |
| abstract_inverted_index.Sequence | 18 |
| abstract_inverted_index.accuracy | 221 |
| abstract_inverted_index.accurate | 82 |
| abstract_inverted_index.approach | 176, 209 |
| abstract_inverted_index.datasets | 201 |
| abstract_inverted_index.guidance | 112 |
| abstract_inverted_index.learning | 174 |
| abstract_inverted_index.methods, | 147 |
| abstract_inverted_index.modeling | 1, 83 |
| abstract_inverted_index.previous | 91, 213 |
| abstract_inverted_index.problem. | 12 |
| abstract_inverted_index.proposed | 15 |
| abstract_inverted_index.recently | 14 |
| abstract_inverted_index.reducing | 223 |
| abstract_inverted_index.temporal | 162, 184 |
| abstract_inverted_index.treating | 36 |
| abstract_inverted_index.Effective | 0 |
| abstract_inverted_index.Selective | 60 |
| abstract_inverted_index.accuracy. | 51 |
| abstract_inverted_index.adversely | 46 |
| abstract_inverted_index.direction | 28 |
| abstract_inverted_index.efficient | 80 |
| abstract_inverted_index.extensive | 192 |
| abstract_inverted_index.footprint | 226 |
| abstract_inverted_index.generator | 70 |
| abstract_inverted_index.long-form | 7, 132, 198 |
| abstract_inverted_index.long-term | 85 |
| abstract_inverted_index.promising | 27 |
| abstract_inverted_index.reduction | 94, 146 |
| abstract_inverted_index.resulting | 77 |
| abstract_inverted_index.Structured | 16 |
| abstract_inverted_index.adaptively | 72 |
| abstract_inverted_index.complexity | 24 |
| abstract_inverted_index.efficiency | 49 |
| abstract_inverted_index.long-short | 171 |
| abstract_inverted_index.mask-based | 92 |
| abstract_inverted_index.robustness | 159 |
| abstract_inverted_index.Breakfast), | 205 |
| abstract_inverted_index.State-Space | 17 |
| abstract_inverted_index.calculation | 106 |
| abstract_inverted_index.challenging | 197 |
| abstract_inverted_index.comparative | 193 |
| abstract_inverted_index.contrastive | 173 |
| abstract_inverted_index.demonstrate | 34 |
| abstract_inverted_index.efficiently | 123 |
| abstract_inverted_index.informative | 74, 126, 149 |
| abstract_inverted_index.lightweight | 68 |
| abstract_inverted_index.limitation, | 55 |
| abstract_inverted_index.outperforms | 211 |
| abstract_inverted_index.consistently | 210 |
| abstract_inverted_index.dependencies | 5, 87 |
| abstract_inverted_index.effectively. | 137 |
| abstract_inverted_index.image-tokens | 38 |
| abstract_inverted_index.incorrectly. | 155 |
| abstract_inverted_index.demonstrating | 206 |
| abstract_inverted_index.transformers, | 98 |
| abstract_inverted_index.understanding | 134, 200 |
| abstract_inverted_index.self-attention | 105 |
| abstract_inverted_index.spatiotemporal | 4, 86 |
| abstract_inverted_index.momentum-updated | 115 |
| abstract_inverted_index.state-of-the-art | 214 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile |