Self-adaptive bridge bare rebar detection algorithm based on local image segmentation and multi-feature filtering Article Swipe
Fuqiang He
,
Hong Luo
,
Xuelian Yao
,
Ping An
·
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.5768/jao202041.0302004
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.5768/jao202041.0302004
针对光照不均、多种复杂背景并存的工况下,采用传统阈值分割方法难以有效将露筋与背景分开的问题,提出了基于局部图像分割与多特征滤波的自适应桥梁露筋检测算法。首先,将灰度图像的灰度值进行投影并寻找露筋在投影图上形成的波谷及其坐标;其次,以波谷坐标为中心设置分割范围对灰度图进行行和列的分块,然后对合并行和列分块的灰度图像进行局部阈值分割;最后,基于多特征滤波实现露筋特征的提取。采用该算法对7种常见的露筋进行验证。实验表明:该方法的平均误检率、漏检率和与人工测量的露筋长度相对误差分别为5.15%、3.89%和3.74%,误差符合公路病害评定标准,实现了复杂环境下露筋的自适应识别。
Related Topics
Concepts
Feature (linguistics)
Segmentation
Computer science
Image segmentation
Bridge (graph theory)
Artificial intelligence
Rebar
Pattern recognition (psychology)
Image (mathematics)
Computer vision
Feature detection (computer vision)
Algorithm
Image processing
Materials science
Composite material
Linguistics
Medicine
Philosophy
Internal medicine
Metadata
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.5768/jao202041.0302004
- OA Status
- hybrid
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3028909449
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3028909449Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.5768/jao202041.0302004Digital Object Identifier
- Title
-
Self-adaptive bridge bare rebar detection algorithm based on local image segmentation and multi-feature filteringWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-01-01Full publication date if available
- Authors
-
Fuqiang He, Hong Luo, Xuelian Yao, Ping AnList of authors in order
- Landing page
-
https://doi.org/10.5768/jao202041.0302004Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.5768/jao202041.0302004Direct OA link when available
- Concepts
-
Feature (linguistics), Segmentation, Computer science, Image segmentation, Bridge (graph theory), Artificial intelligence, Rebar, Pattern recognition (psychology), Image (mathematics), Computer vision, Feature detection (computer vision), Algorithm, Image processing, Materials science, Composite material, Linguistics, Medicine, Philosophy, Internal medicineTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3028909449 |
|---|---|
| doi | https://doi.org/10.5768/jao202041.0302004 |
| ids.doi | https://doi.org/10.5768/jao202041.0302004 |
| ids.mag | 3028909449 |
| ids.openalex | https://openalex.org/W3028909449 |
| fwci | 0.0 |
| type | article |
| title | Self-adaptive bridge bare rebar detection algorithm based on local image segmentation and multi-feature filtering |
| biblio.issue | 3 |
| biblio.volume | 41 |
| biblio.last_page | 515 |
| biblio.first_page | 508 |
| topics[0].id | https://openalex.org/T11606 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2205 |
| topics[0].subfield.display_name | Civil and Structural Engineering |
| topics[0].display_name | Infrastructure Maintenance and Monitoring |
| topics[1].id | https://openalex.org/T11850 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9660999774932861 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2205 |
| topics[1].subfield.display_name | Civil and Structural Engineering |
| topics[1].display_name | Concrete Corrosion and Durability |
| topics[2].id | https://openalex.org/T10534 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9589999914169312 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2205 |
| topics[2].subfield.display_name | Civil and Structural Engineering |
| topics[2].display_name | Structural Health Monitoring Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2776401178 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7012270092964172 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[0].display_name | Feature (linguistics) |
| concepts[1].id | https://openalex.org/C89600930 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6181777715682983 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[1].display_name | Segmentation |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5830304026603699 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C124504099 |
| concepts[3].level | 3 |
| concepts[3].score | 0.5770604014396667 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q56933 |
| concepts[3].display_name | Image segmentation |
| concepts[4].id | https://openalex.org/C100776233 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5767042636871338 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2532492 |
| concepts[4].display_name | Bridge (graph theory) |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.5663602948188782 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C2778664469 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5655032992362976 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q150425 |
| concepts[6].display_name | Rebar |
| concepts[7].id | https://openalex.org/C153180895 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5479661226272583 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[7].display_name | Pattern recognition (psychology) |
| concepts[8].id | https://openalex.org/C115961682 |
| concepts[8].level | 2 |
| concepts[8].score | 0.5282256603240967 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[8].display_name | Image (mathematics) |
| concepts[9].id | https://openalex.org/C31972630 |
| concepts[9].level | 1 |
| concepts[9].score | 0.4775743782520294 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[9].display_name | Computer vision |
| concepts[10].id | https://openalex.org/C126422989 |
| concepts[10].level | 4 |
| concepts[10].score | 0.4233246445655823 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q93586 |
| concepts[10].display_name | Feature detection (computer vision) |
| concepts[11].id | https://openalex.org/C11413529 |
| concepts[11].level | 1 |
| concepts[11].score | 0.3992966413497925 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[11].display_name | Algorithm |
| concepts[12].id | https://openalex.org/C9417928 |
| concepts[12].level | 3 |
| concepts[12].score | 0.23288634419441223 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q1070689 |
| concepts[12].display_name | Image processing |
| concepts[13].id | https://openalex.org/C192562407 |
| concepts[13].level | 0 |
| concepts[13].score | 0.18781867623329163 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[13].display_name | Materials science |
| concepts[14].id | https://openalex.org/C159985019 |
| concepts[14].level | 1 |
| concepts[14].score | 0.06687858700752258 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q181790 |
| concepts[14].display_name | Composite material |
| concepts[15].id | https://openalex.org/C41895202 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[15].display_name | Linguistics |
| concepts[16].id | https://openalex.org/C71924100 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[16].display_name | Medicine |
| concepts[17].id | https://openalex.org/C138885662 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[17].display_name | Philosophy |
| concepts[18].id | https://openalex.org/C126322002 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q11180 |
| concepts[18].display_name | Internal medicine |
| keywords[0].id | https://openalex.org/keywords/feature |
| keywords[0].score | 0.7012270092964172 |
| keywords[0].display_name | Feature (linguistics) |
| keywords[1].id | https://openalex.org/keywords/segmentation |
| keywords[1].score | 0.6181777715682983 |
| keywords[1].display_name | Segmentation |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.5830304026603699 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/image-segmentation |
| keywords[3].score | 0.5770604014396667 |
| keywords[3].display_name | Image segmentation |
| keywords[4].id | https://openalex.org/keywords/bridge |
| keywords[4].score | 0.5767042636871338 |
| keywords[4].display_name | Bridge (graph theory) |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.5663602948188782 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/rebar |
| keywords[6].score | 0.5655032992362976 |
| keywords[6].display_name | Rebar |
| keywords[7].id | https://openalex.org/keywords/pattern-recognition |
| keywords[7].score | 0.5479661226272583 |
| keywords[7].display_name | Pattern recognition (psychology) |
| keywords[8].id | https://openalex.org/keywords/image |
| keywords[8].score | 0.5282256603240967 |
| keywords[8].display_name | Image (mathematics) |
| keywords[9].id | https://openalex.org/keywords/computer-vision |
| keywords[9].score | 0.4775743782520294 |
| keywords[9].display_name | Computer vision |
| keywords[10].id | https://openalex.org/keywords/feature-detection |
| keywords[10].score | 0.4233246445655823 |
| keywords[10].display_name | Feature detection (computer vision) |
| keywords[11].id | https://openalex.org/keywords/algorithm |
| keywords[11].score | 0.3992966413497925 |
| keywords[11].display_name | Algorithm |
| keywords[12].id | https://openalex.org/keywords/image-processing |
| keywords[12].score | 0.23288634419441223 |
| keywords[12].display_name | Image processing |
| keywords[13].id | https://openalex.org/keywords/materials-science |
| keywords[13].score | 0.18781867623329163 |
| keywords[13].display_name | Materials science |
| keywords[14].id | https://openalex.org/keywords/composite-material |
| keywords[14].score | 0.06687858700752258 |
| keywords[14].display_name | Composite material |
| language | en |
| locations[0].id | doi:10.5768/jao202041.0302004 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2764877685 |
| locations[0].source.issn | 1002-2082 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1002-2082 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Journal of Applied Optics |
| locations[0].source.host_organization | https://openalex.org/P4323862650 |
| locations[0].source.host_organization_name | ying yong guang xue bian ji bu |
| locations[0].source.host_organization_lineage | https://openalex.org/P4323862650 |
| locations[0].source.host_organization_lineage_names | ying yong guang xue bian ji bu |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of Applied Optics |
| locations[0].landing_page_url | https://doi.org/10.5768/jao202041.0302004 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5055343584 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-3360-7143 |
| authorships[0].author.display_name | Fuqiang He |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | HE Fuqiang |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5006262355 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-4379-9492 |
| authorships[1].author.display_name | Hong Luo |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | LUO Hong |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5100740002 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-7992-7877 |
| authorships[2].author.display_name | Xuelian Yao |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | YAO Xuelian |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5101816580 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-9244-5562 |
| authorships[3].author.display_name | Ping An |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | PING An |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.5768/jao202041.0302004 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Self-adaptive bridge bare rebar detection algorithm based on local image segmentation and multi-feature filtering |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11606 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2205 |
| primary_topic.subfield.display_name | Civil and Structural Engineering |
| primary_topic.display_name | Infrastructure Maintenance and Monitoring |
| related_works | https://openalex.org/W2007566151, https://openalex.org/W2361446527, https://openalex.org/W3152379158, https://openalex.org/W2388503585, https://openalex.org/W3100037339, https://openalex.org/W1522196789, https://openalex.org/W3017192027, https://openalex.org/W2153517464, https://openalex.org/W2951798667, https://openalex.org/W3037821027 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.5768/jao202041.0302004 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2764877685 |
| best_oa_location.source.issn | 1002-2082 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 1002-2082 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Journal of Applied Optics |
| best_oa_location.source.host_organization | https://openalex.org/P4323862650 |
| best_oa_location.source.host_organization_name | ying yong guang xue bian ji bu |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4323862650 |
| best_oa_location.source.host_organization_lineage_names | ying yong guang xue bian ji bu |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Journal of Applied Optics |
| best_oa_location.landing_page_url | https://doi.org/10.5768/jao202041.0302004 |
| primary_location.id | doi:10.5768/jao202041.0302004 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2764877685 |
| primary_location.source.issn | 1002-2082 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1002-2082 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Journal of Applied Optics |
| primary_location.source.host_organization | https://openalex.org/P4323862650 |
| primary_location.source.host_organization_name | ying yong guang xue bian ji bu |
| primary_location.source.host_organization_lineage | https://openalex.org/P4323862650 |
| primary_location.source.host_organization_lineage_names | ying yong guang xue bian ji bu |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of Applied Optics |
| primary_location.landing_page_url | https://doi.org/10.5768/jao202041.0302004 |
| publication_date | 2020-01-01 |
| publication_year | 2020 |
| referenced_works_count | 0 |
| abstract_inverted_index.针对光照不均、多种复杂背景并存的工况下,采用传统阈值分割方法难以有效将露筋与背景分开的问题,提出了基于局部图像分割与多特征滤波的自适应桥梁露筋检测算法。首先,将灰度图像的灰度值进行投影并寻找露筋在投影图上形成的波谷及其坐标;其次,以波谷坐标为中心设置分割范围对灰度图进行行和列的分块,然后对合并行和列分块的灰度图像进行局部阈值分割;最后,基于多特征滤波实现露筋特征的提取。采用该算法对7种常见的露筋进行验证。实验表明:该方法的平均误检率、漏检率和与人工测量的露筋长度相对误差分别为5.15%、3.89%和3.74%,误差符合公路病害评定标准,实现了复杂环境下露筋的自适应识别。 | 0 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/11 |
| sustainable_development_goals[0].score | 0.5799999833106995 |
| sustainable_development_goals[0].display_name | Sustainable cities and communities |
| citation_normalized_percentile.value | 0.05420644 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |