Self-adaptive Context and Modal-interaction Modeling For Multimodal Emotion Recognition Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.18653/v1/2023.findings-acl.390
The multimodal emotion recognition in conversation task aims to predict the emotion label for a given utterance with its context and multiple modalities. Existing approaches achieve good results but also suffer from the following two limitations: 1) lacking modeling of diverse dependency ranges, i.e., long, short, and independent context-specific representations and without consideration of the different recognition difficulty for each utterance; 2) consistent treatment of the contribution for various modalities. To address the above challenges, we propose the Self-adaptive Context and Modal-interaction Modeling (SCMM) framework. We first design the context representation module, which consists of three submodules to model multiple contextual representations. Thereafter, we propose the modal-interaction module, including three interaction submodules to make full use of each modality. Finally, we come up with a self-adaptive path selection module to select an appropriate path in each module and integrate the features to obtain the final representation. Extensive experiments under four settings on three multimodal datasets, including IEMOCAP, MELD, and MOSEI, demonstrate that our proposed method outperforms the state-of-the-art approaches.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.18653/v1/2023.findings-acl.390
- https://aclanthology.org/2023.findings-acl.390.pdf
- OA Status
- gold
- Cited By
- 16
- References
- 23
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4385571780
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4385571780Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.18653/v1/2023.findings-acl.390Digital Object Identifier
- Title
-
Self-adaptive Context and Modal-interaction Modeling For Multimodal Emotion RecognitionWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-01-01Full publication date if available
- Authors
-
Haozhe Yang, Xianqiang Gao, Jianlong Wu, Tian Gan, Ning Ding, Feijun Jiang, Liqiang NieList of authors in order
- Landing page
-
https://doi.org/10.18653/v1/2023.findings-acl.390Publisher landing page
- PDF URL
-
https://aclanthology.org/2023.findings-acl.390.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://aclanthology.org/2023.findings-acl.390.pdfDirect OA link when available
- Concepts
-
Computer science, Modalities, Context (archaeology), Representation (politics), Modal, Utterance, Conversation, Artificial intelligence, Modality (human–computer interaction), Dependency (UML), Task (project management), Context model, Human–computer interaction, Path (computing), Adaptation (eye), Selection (genetic algorithm), Natural language processing, Machine learning, Object (grammar), Engineering, Politics, Social science, Optics, Physics, Biology, Sociology, Programming language, Political science, Philosophy, Law, Polymer chemistry, Linguistics, Chemistry, Systems engineering, PaleontologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
16Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 11, 2024: 5Per-year citation counts (last 5 years)
- References (count)
-
23Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4385571780 |
|---|---|
| doi | https://doi.org/10.18653/v1/2023.findings-acl.390 |
| ids.doi | https://doi.org/10.18653/v1/2023.findings-acl.390 |
| ids.openalex | https://openalex.org/W4385571780 |
| fwci | 6.66624342 |
| type | article |
| title | Self-adaptive Context and Modal-interaction Modeling For Multimodal Emotion Recognition |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10667 |
| topics[0].field.id | https://openalex.org/fields/32 |
| topics[0].field.display_name | Psychology |
| topics[0].score | 0.9873999953269958 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3205 |
| topics[0].subfield.display_name | Experimental and Cognitive Psychology |
| topics[0].display_name | Emotion and Mood Recognition |
| topics[1].id | https://openalex.org/T12031 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9833999872207642 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Speech and dialogue systems |
| topics[2].id | https://openalex.org/T10664 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.972599983215332 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Sentiment Analysis and Opinion Mining |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8082513809204102 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C2779903281 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7066445350646973 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q6888026 |
| concepts[1].display_name | Modalities |
| concepts[2].id | https://openalex.org/C2779343474 |
| concepts[2].level | 2 |
| concepts[2].score | 0.662540853023529 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q3109175 |
| concepts[2].display_name | Context (archaeology) |
| concepts[3].id | https://openalex.org/C2776359362 |
| concepts[3].level | 3 |
| concepts[3].score | 0.6432596445083618 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2145286 |
| concepts[3].display_name | Representation (politics) |
| concepts[4].id | https://openalex.org/C71139939 |
| concepts[4].level | 2 |
| concepts[4].score | 0.636527419090271 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q910194 |
| concepts[4].display_name | Modal |
| concepts[5].id | https://openalex.org/C2775852435 |
| concepts[5].level | 2 |
| concepts[5].score | 0.6240116357803345 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q258403 |
| concepts[5].display_name | Utterance |
| concepts[6].id | https://openalex.org/C2777200299 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5859577059745789 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q52943 |
| concepts[6].display_name | Conversation |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.5024855136871338 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| concepts[8].id | https://openalex.org/C2780226545 |
| concepts[8].level | 2 |
| concepts[8].score | 0.49289584159851074 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q6888030 |
| concepts[8].display_name | Modality (human–computer interaction) |
| concepts[9].id | https://openalex.org/C19768560 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4780053198337555 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q320727 |
| concepts[9].display_name | Dependency (UML) |
| concepts[10].id | https://openalex.org/C2780451532 |
| concepts[10].level | 2 |
| concepts[10].score | 0.46979913115501404 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q759676 |
| concepts[10].display_name | Task (project management) |
| concepts[11].id | https://openalex.org/C183322885 |
| concepts[11].level | 3 |
| concepts[11].score | 0.4642409086227417 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q17007702 |
| concepts[11].display_name | Context model |
| concepts[12].id | https://openalex.org/C107457646 |
| concepts[12].level | 1 |
| concepts[12].score | 0.44284379482269287 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q207434 |
| concepts[12].display_name | Human–computer interaction |
| concepts[13].id | https://openalex.org/C2777735758 |
| concepts[13].level | 2 |
| concepts[13].score | 0.43841323256492615 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q817765 |
| concepts[13].display_name | Path (computing) |
| concepts[14].id | https://openalex.org/C139807058 |
| concepts[14].level | 2 |
| concepts[14].score | 0.42902565002441406 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q352374 |
| concepts[14].display_name | Adaptation (eye) |
| concepts[15].id | https://openalex.org/C81917197 |
| concepts[15].level | 2 |
| concepts[15].score | 0.42871567606925964 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q628760 |
| concepts[15].display_name | Selection (genetic algorithm) |
| concepts[16].id | https://openalex.org/C204321447 |
| concepts[16].level | 1 |
| concepts[16].score | 0.3951868414878845 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[16].display_name | Natural language processing |
| concepts[17].id | https://openalex.org/C119857082 |
| concepts[17].level | 1 |
| concepts[17].score | 0.33658167719841003 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[17].display_name | Machine learning |
| concepts[18].id | https://openalex.org/C2781238097 |
| concepts[18].level | 2 |
| concepts[18].score | 0.09968823194503784 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q175026 |
| concepts[18].display_name | Object (grammar) |
| concepts[19].id | https://openalex.org/C127413603 |
| concepts[19].level | 0 |
| concepts[19].score | 0.06639474630355835 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[19].display_name | Engineering |
| concepts[20].id | https://openalex.org/C94625758 |
| concepts[20].level | 2 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q7163 |
| concepts[20].display_name | Politics |
| concepts[21].id | https://openalex.org/C36289849 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q34749 |
| concepts[21].display_name | Social science |
| concepts[22].id | https://openalex.org/C120665830 |
| concepts[22].level | 1 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q14620 |
| concepts[22].display_name | Optics |
| concepts[23].id | https://openalex.org/C121332964 |
| concepts[23].level | 0 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[23].display_name | Physics |
| concepts[24].id | https://openalex.org/C86803240 |
| concepts[24].level | 0 |
| concepts[24].score | 0.0 |
| concepts[24].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[24].display_name | Biology |
| concepts[25].id | https://openalex.org/C144024400 |
| concepts[25].level | 0 |
| concepts[25].score | 0.0 |
| concepts[25].wikidata | https://www.wikidata.org/wiki/Q21201 |
| concepts[25].display_name | Sociology |
| concepts[26].id | https://openalex.org/C199360897 |
| concepts[26].level | 1 |
| concepts[26].score | 0.0 |
| concepts[26].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[26].display_name | Programming language |
| concepts[27].id | https://openalex.org/C17744445 |
| concepts[27].level | 0 |
| concepts[27].score | 0.0 |
| concepts[27].wikidata | https://www.wikidata.org/wiki/Q36442 |
| concepts[27].display_name | Political science |
| concepts[28].id | https://openalex.org/C138885662 |
| concepts[28].level | 0 |
| concepts[28].score | 0.0 |
| concepts[28].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[28].display_name | Philosophy |
| concepts[29].id | https://openalex.org/C199539241 |
| concepts[29].level | 1 |
| concepts[29].score | 0.0 |
| concepts[29].wikidata | https://www.wikidata.org/wiki/Q7748 |
| concepts[29].display_name | Law |
| concepts[30].id | https://openalex.org/C188027245 |
| concepts[30].level | 1 |
| concepts[30].score | 0.0 |
| concepts[30].wikidata | https://www.wikidata.org/wiki/Q750446 |
| concepts[30].display_name | Polymer chemistry |
| concepts[31].id | https://openalex.org/C41895202 |
| concepts[31].level | 1 |
| concepts[31].score | 0.0 |
| concepts[31].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[31].display_name | Linguistics |
| concepts[32].id | https://openalex.org/C185592680 |
| concepts[32].level | 0 |
| concepts[32].score | 0.0 |
| concepts[32].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[32].display_name | Chemistry |
| concepts[33].id | https://openalex.org/C201995342 |
| concepts[33].level | 1 |
| concepts[33].score | 0.0 |
| concepts[33].wikidata | https://www.wikidata.org/wiki/Q682496 |
| concepts[33].display_name | Systems engineering |
| concepts[34].id | https://openalex.org/C151730666 |
| concepts[34].level | 1 |
| concepts[34].score | 0.0 |
| concepts[34].wikidata | https://www.wikidata.org/wiki/Q7205 |
| concepts[34].display_name | Paleontology |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.8082513809204102 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/modalities |
| keywords[1].score | 0.7066445350646973 |
| keywords[1].display_name | Modalities |
| keywords[2].id | https://openalex.org/keywords/context |
| keywords[2].score | 0.662540853023529 |
| keywords[2].display_name | Context (archaeology) |
| keywords[3].id | https://openalex.org/keywords/representation |
| keywords[3].score | 0.6432596445083618 |
| keywords[3].display_name | Representation (politics) |
| keywords[4].id | https://openalex.org/keywords/modal |
| keywords[4].score | 0.636527419090271 |
| keywords[4].display_name | Modal |
| keywords[5].id | https://openalex.org/keywords/utterance |
| keywords[5].score | 0.6240116357803345 |
| keywords[5].display_name | Utterance |
| keywords[6].id | https://openalex.org/keywords/conversation |
| keywords[6].score | 0.5859577059745789 |
| keywords[6].display_name | Conversation |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.5024855136871338 |
| keywords[7].display_name | Artificial intelligence |
| keywords[8].id | https://openalex.org/keywords/modality |
| keywords[8].score | 0.49289584159851074 |
| keywords[8].display_name | Modality (human–computer interaction) |
| keywords[9].id | https://openalex.org/keywords/dependency |
| keywords[9].score | 0.4780053198337555 |
| keywords[9].display_name | Dependency (UML) |
| keywords[10].id | https://openalex.org/keywords/task |
| keywords[10].score | 0.46979913115501404 |
| keywords[10].display_name | Task (project management) |
| keywords[11].id | https://openalex.org/keywords/context-model |
| keywords[11].score | 0.4642409086227417 |
| keywords[11].display_name | Context model |
| keywords[12].id | https://openalex.org/keywords/human–computer-interaction |
| keywords[12].score | 0.44284379482269287 |
| keywords[12].display_name | Human–computer interaction |
| keywords[13].id | https://openalex.org/keywords/path |
| keywords[13].score | 0.43841323256492615 |
| keywords[13].display_name | Path (computing) |
| keywords[14].id | https://openalex.org/keywords/adaptation |
| keywords[14].score | 0.42902565002441406 |
| keywords[14].display_name | Adaptation (eye) |
| keywords[15].id | https://openalex.org/keywords/selection |
| keywords[15].score | 0.42871567606925964 |
| keywords[15].display_name | Selection (genetic algorithm) |
| keywords[16].id | https://openalex.org/keywords/natural-language-processing |
| keywords[16].score | 0.3951868414878845 |
| keywords[16].display_name | Natural language processing |
| keywords[17].id | https://openalex.org/keywords/machine-learning |
| keywords[17].score | 0.33658167719841003 |
| keywords[17].display_name | Machine learning |
| keywords[18].id | https://openalex.org/keywords/object |
| keywords[18].score | 0.09968823194503784 |
| keywords[18].display_name | Object (grammar) |
| keywords[19].id | https://openalex.org/keywords/engineering |
| keywords[19].score | 0.06639474630355835 |
| keywords[19].display_name | Engineering |
| language | en |
| locations[0].id | doi:10.18653/v1/2023.findings-acl.390 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://aclanthology.org/2023.findings-acl.390.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Findings of the Association for Computational Linguistics: ACL 2023 |
| locations[0].landing_page_url | https://doi.org/10.18653/v1/2023.findings-acl.390 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5101903607 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-1708-1233 |
| authorships[0].author.display_name | Haozhe Yang |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I154099455 |
| authorships[0].affiliations[0].raw_affiliation_string | Shandong University, |
| authorships[0].institutions[0].id | https://openalex.org/I154099455 |
| authorships[0].institutions[0].ror | https://ror.org/0207yh398 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I154099455 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Shandong University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Haozhe Yang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Shandong University, |
| authorships[1].author.id | https://openalex.org/A5000429632 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Xianqiang Gao |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I154099455 |
| authorships[1].affiliations[0].raw_affiliation_string | Shandong University, |
| authorships[1].institutions[0].id | https://openalex.org/I154099455 |
| authorships[1].institutions[0].ror | https://ror.org/0207yh398 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I154099455 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Shandong University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Xianqiang Gao |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Shandong University, |
| authorships[2].author.id | https://openalex.org/A5100654190 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-0247-5221 |
| authorships[2].author.display_name | Jianlong Wu |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I204983213 |
| authorships[2].affiliations[0].raw_affiliation_string | Harbin Institute of Technology (Shenzhen), |
| authorships[2].institutions[0].id | https://openalex.org/I204983213 |
| authorships[2].institutions[0].ror | https://ror.org/01yqg2h08 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I204983213 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Harbin Institute of Technology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Jianlong Wu |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Harbin Institute of Technology (Shenzhen), |
| authorships[3].author.id | https://openalex.org/A5100654958 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-3197-5698 |
| authorships[3].author.display_name | Tian Gan |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I154099455 |
| authorships[3].affiliations[0].raw_affiliation_string | Shandong University, |
| authorships[3].institutions[0].id | https://openalex.org/I154099455 |
| authorships[3].institutions[0].ror | https://ror.org/0207yh398 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I154099455 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Shandong University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Tian Gan |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Shandong University, |
| authorships[4].author.id | https://openalex.org/A5031792794 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-5618-6359 |
| authorships[4].author.display_name | Ning Ding |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210095624 |
| authorships[4].affiliations[0].raw_affiliation_string | Alibaba Group |
| authorships[4].institutions[0].id | https://openalex.org/I4210095624 |
| authorships[4].institutions[0].ror | https://ror.org/00rn0m335 |
| authorships[4].institutions[0].type | company |
| authorships[4].institutions[0].lineage | https://openalex.org/I4210095624, https://openalex.org/I45928872 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | Alibaba Group (United States) |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Ning Ding |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Alibaba Group |
| authorships[5].author.id | https://openalex.org/A5057405217 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-5579-5144 |
| authorships[5].author.display_name | Feijun Jiang |
| authorships[5].countries | US |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I4210095624 |
| authorships[5].affiliations[0].raw_affiliation_string | Alibaba Group |
| authorships[5].institutions[0].id | https://openalex.org/I4210095624 |
| authorships[5].institutions[0].ror | https://ror.org/00rn0m335 |
| authorships[5].institutions[0].type | company |
| authorships[5].institutions[0].lineage | https://openalex.org/I4210095624, https://openalex.org/I45928872 |
| authorships[5].institutions[0].country_code | US |
| authorships[5].institutions[0].display_name | Alibaba Group (United States) |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Feijun Jiang |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Alibaba Group |
| authorships[6].author.id | https://openalex.org/A5038612499 |
| authorships[6].author.orcid | https://orcid.org/0000-0003-1476-0273 |
| authorships[6].author.display_name | Liqiang Nie |
| authorships[6].countries | CN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I204983213 |
| authorships[6].affiliations[0].raw_affiliation_string | Harbin Institute of Technology (Shenzhen), |
| authorships[6].institutions[0].id | https://openalex.org/I204983213 |
| authorships[6].institutions[0].ror | https://ror.org/01yqg2h08 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I204983213 |
| authorships[6].institutions[0].country_code | CN |
| authorships[6].institutions[0].display_name | Harbin Institute of Technology |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Liqiang Nie |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Harbin Institute of Technology (Shenzhen), |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://aclanthology.org/2023.findings-acl.390.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Self-adaptive Context and Modal-interaction Modeling For Multimodal Emotion Recognition |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10667 |
| primary_topic.field.id | https://openalex.org/fields/32 |
| primary_topic.field.display_name | Psychology |
| primary_topic.score | 0.9873999953269958 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3205 |
| primary_topic.subfield.display_name | Experimental and Cognitive Psychology |
| primary_topic.display_name | Emotion and Mood Recognition |
| related_works | https://openalex.org/W2980881520, https://openalex.org/W2613123485, https://openalex.org/W2952745240, https://openalex.org/W2949074159, https://openalex.org/W4301143707, https://openalex.org/W4298715519, https://openalex.org/W2474574787, https://openalex.org/W3211385060, https://openalex.org/W2546190447, https://openalex.org/W1504101963 |
| cited_by_count | 16 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 11 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 5 |
| locations_count | 1 |
| best_oa_location.id | doi:10.18653/v1/2023.findings-acl.390 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://aclanthology.org/2023.findings-acl.390.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | proceedings-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Findings of the Association for Computational Linguistics: ACL 2023 |
| best_oa_location.landing_page_url | https://doi.org/10.18653/v1/2023.findings-acl.390 |
| primary_location.id | doi:10.18653/v1/2023.findings-acl.390 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://aclanthology.org/2023.findings-acl.390.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Findings of the Association for Computational Linguistics: ACL 2023 |
| primary_location.landing_page_url | https://doi.org/10.18653/v1/2023.findings-acl.390 |
| publication_date | 2023-01-01 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W2979826702, https://openalex.org/W2963686995, https://openalex.org/W1987048275, https://openalex.org/W2053101950, https://openalex.org/W2966683369, https://openalex.org/W4221147459, https://openalex.org/W3175552668, https://openalex.org/W2891359673, https://openalex.org/W2052280110, https://openalex.org/W3035020961, https://openalex.org/W2963446712, https://openalex.org/W2964300796, https://openalex.org/W1601218598, https://openalex.org/W3103145119, https://openalex.org/W2149940198, https://openalex.org/W2985882473, https://openalex.org/W3173396651, https://openalex.org/W2955429306, https://openalex.org/W3173751215, https://openalex.org/W2883409523, https://openalex.org/W2146334809, https://openalex.org/W4287887917, https://openalex.org/W3105906861 |
| referenced_works_count | 23 |
| abstract_inverted_index.a | 14, 124 |
| abstract_inverted_index.1) | 36 |
| abstract_inverted_index.2) | 61 |
| abstract_inverted_index.To | 70 |
| abstract_inverted_index.We | 85 |
| abstract_inverted_index.an | 131 |
| abstract_inverted_index.in | 4, 134 |
| abstract_inverted_index.of | 39, 53, 64, 94, 116 |
| abstract_inverted_index.on | 151 |
| abstract_inverted_index.to | 8, 97, 112, 129, 141 |
| abstract_inverted_index.up | 122 |
| abstract_inverted_index.we | 75, 103, 120 |
| abstract_inverted_index.The | 0 |
| abstract_inverted_index.and | 20, 46, 50, 80, 137, 158 |
| abstract_inverted_index.but | 28 |
| abstract_inverted_index.for | 13, 58, 67 |
| abstract_inverted_index.its | 18 |
| abstract_inverted_index.our | 162 |
| abstract_inverted_index.the | 10, 32, 54, 65, 72, 77, 88, 105, 139, 143, 166 |
| abstract_inverted_index.two | 34 |
| abstract_inverted_index.use | 115 |
| abstract_inverted_index.aims | 7 |
| abstract_inverted_index.also | 29 |
| abstract_inverted_index.come | 121 |
| abstract_inverted_index.each | 59, 117, 135 |
| abstract_inverted_index.four | 149 |
| abstract_inverted_index.from | 31 |
| abstract_inverted_index.full | 114 |
| abstract_inverted_index.good | 26 |
| abstract_inverted_index.make | 113 |
| abstract_inverted_index.path | 126, 133 |
| abstract_inverted_index.task | 6 |
| abstract_inverted_index.that | 161 |
| abstract_inverted_index.with | 17, 123 |
| abstract_inverted_index.MELD, | 157 |
| abstract_inverted_index.above | 73 |
| abstract_inverted_index.final | 144 |
| abstract_inverted_index.first | 86 |
| abstract_inverted_index.given | 15 |
| abstract_inverted_index.i.e., | 43 |
| abstract_inverted_index.label | 12 |
| abstract_inverted_index.long, | 44 |
| abstract_inverted_index.model | 98 |
| abstract_inverted_index.three | 95, 109, 152 |
| abstract_inverted_index.under | 148 |
| abstract_inverted_index.which | 92 |
| abstract_inverted_index.(SCMM) | 83 |
| abstract_inverted_index.MOSEI, | 159 |
| abstract_inverted_index.design | 87 |
| abstract_inverted_index.method | 164 |
| abstract_inverted_index.module | 128, 136 |
| abstract_inverted_index.obtain | 142 |
| abstract_inverted_index.select | 130 |
| abstract_inverted_index.short, | 45 |
| abstract_inverted_index.suffer | 30 |
| abstract_inverted_index.Context | 79 |
| abstract_inverted_index.achieve | 25 |
| abstract_inverted_index.address | 71 |
| abstract_inverted_index.context | 19, 89 |
| abstract_inverted_index.diverse | 40 |
| abstract_inverted_index.emotion | 2, 11 |
| abstract_inverted_index.lacking | 37 |
| abstract_inverted_index.module, | 91, 107 |
| abstract_inverted_index.predict | 9 |
| abstract_inverted_index.propose | 76, 104 |
| abstract_inverted_index.ranges, | 42 |
| abstract_inverted_index.results | 27 |
| abstract_inverted_index.various | 68 |
| abstract_inverted_index.without | 51 |
| abstract_inverted_index.Existing | 23 |
| abstract_inverted_index.Finally, | 119 |
| abstract_inverted_index.IEMOCAP, | 156 |
| abstract_inverted_index.Modeling | 82 |
| abstract_inverted_index.consists | 93 |
| abstract_inverted_index.features | 140 |
| abstract_inverted_index.modeling | 38 |
| abstract_inverted_index.multiple | 21, 99 |
| abstract_inverted_index.proposed | 163 |
| abstract_inverted_index.settings | 150 |
| abstract_inverted_index.Extensive | 146 |
| abstract_inverted_index.datasets, | 154 |
| abstract_inverted_index.different | 55 |
| abstract_inverted_index.following | 33 |
| abstract_inverted_index.including | 108, 155 |
| abstract_inverted_index.integrate | 138 |
| abstract_inverted_index.modality. | 118 |
| abstract_inverted_index.selection | 127 |
| abstract_inverted_index.treatment | 63 |
| abstract_inverted_index.utterance | 16 |
| abstract_inverted_index.approaches | 24 |
| abstract_inverted_index.consistent | 62 |
| abstract_inverted_index.contextual | 100 |
| abstract_inverted_index.dependency | 41 |
| abstract_inverted_index.difficulty | 57 |
| abstract_inverted_index.framework. | 84 |
| abstract_inverted_index.multimodal | 1, 153 |
| abstract_inverted_index.submodules | 96, 111 |
| abstract_inverted_index.utterance; | 60 |
| abstract_inverted_index.Thereafter, | 102 |
| abstract_inverted_index.approaches. | 168 |
| abstract_inverted_index.appropriate | 132 |
| abstract_inverted_index.challenges, | 74 |
| abstract_inverted_index.demonstrate | 160 |
| abstract_inverted_index.experiments | 147 |
| abstract_inverted_index.independent | 47 |
| abstract_inverted_index.interaction | 110 |
| abstract_inverted_index.modalities. | 22, 69 |
| abstract_inverted_index.outperforms | 165 |
| abstract_inverted_index.recognition | 3, 56 |
| abstract_inverted_index.contribution | 66 |
| abstract_inverted_index.conversation | 5 |
| abstract_inverted_index.limitations: | 35 |
| abstract_inverted_index.Self-adaptive | 78 |
| abstract_inverted_index.consideration | 52 |
| abstract_inverted_index.self-adaptive | 125 |
| abstract_inverted_index.representation | 90 |
| abstract_inverted_index.representation. | 145 |
| abstract_inverted_index.representations | 49 |
| abstract_inverted_index.context-specific | 48 |
| abstract_inverted_index.representations. | 101 |
| abstract_inverted_index.state-of-the-art | 167 |
| abstract_inverted_index.Modal-interaction | 81 |
| abstract_inverted_index.modal-interaction | 106 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 98 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 7 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/4 |
| sustainable_development_goals[0].score | 0.41999998688697815 |
| sustainable_development_goals[0].display_name | Quality Education |
| citation_normalized_percentile.value | 0.95383018 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |