Self-contrastive weakly supervised learning framework for prognostic prediction using whole slide images Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1371/journal.pdig.0000972
We present a pioneering investigation into the application of deep learning techniques to analyze histopathological images for addressing the substantial challenge of automated prognostic prediction. Prognostic prediction poses a unique challenge as the ground truth labels are inherently weak, and the model must anticipate future events that are not directly observable in the image. To address this challenge, we propose a novel three-part framework comprising of a convolutional network based tissue segmentation algorithm for region of interest delineation, a contrastive learning module for feature extraction, and a nested multiple instance learning classification module. Our study explores the significance of various regions of interest within the histopathological slides and exploits diverse learning methods in real-world clinical scenarios. The pipeline is initially validated on artificially generated data and a simpler diagnostic task. Transitioning to prognostic prediction, tasks become more challenging. Employing bladder cancer as use case, our best models yield an AUC of 0.721 and 0.678 for recurrence and treatment outcome prediction respectively for a private data cohort. Altogether, this research serves as an initial investigation on the shortcomings of histopathological image analysis for treatment outcome prediction.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1371/journal.pdig.0000972
- OA Status
- gold
- References
- 44
- OpenAlex ID
- https://openalex.org/W4414645508
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4414645508Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1371/journal.pdig.0000972Digital Object Identifier
- Title
-
Self-contrastive weakly supervised learning framework for prognostic prediction using whole slide imagesWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-09-30Full publication date if available
- Authors
-
Saul Fuster, Farbod Khoraminia, Julio Silva-Rodríguez, Umay Kiraz, Geert J.L.H. van Leenders, Trygve Eftestøl, Valery Naranjo, Emiel A. M. Janssen, Tahlita C.M. Zuiverloon, Kjersti EnganList of authors in order
- Landing page
-
https://doi.org/10.1371/journal.pdig.0000972Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1371/journal.pdig.0000972Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
44Number of works referenced by this work
Full payload
| id | https://openalex.org/W4414645508 |
|---|---|
| doi | https://doi.org/10.1371/journal.pdig.0000972 |
| ids.doi | https://doi.org/10.1371/journal.pdig.0000972 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/41026797 |
| ids.openalex | https://openalex.org/W4414645508 |
| fwci | 0.0 |
| type | article |
| title | Self-contrastive weakly supervised learning framework for prognostic prediction using whole slide images |
| biblio.issue | 9 |
| biblio.volume | 4 |
| biblio.last_page | e0000972 |
| biblio.first_page | e0000972 |
| topics[0].id | https://openalex.org/T10552 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.998199999332428 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2730 |
| topics[0].subfield.display_name | Oncology |
| topics[0].display_name | Colorectal Cancer Screening and Detection |
| topics[1].id | https://openalex.org/T10862 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9970999956130981 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | AI in cancer detection |
| topics[2].id | https://openalex.org/T10124 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9886999726295471 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2740 |
| topics[2].subfield.display_name | Pulmonary and Respiratory Medicine |
| topics[2].display_name | Prostate Cancer Diagnosis and Treatment |
| is_xpac | False |
| apc_list.value | 2575 |
| apc_list.currency | USD |
| apc_list.value_usd | 2575 |
| apc_paid.value | 2575 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 2575 |
| language | en |
| locations[0].id | doi:10.1371/journal.pdig.0000972 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210221150 |
| locations[0].source.issn | 2767-3170 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2767-3170 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | PLOS Digital Health |
| locations[0].source.host_organization | https://openalex.org/P4310315706 |
| locations[0].source.host_organization_name | Public Library of Science |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310315706 |
| locations[0].source.host_organization_lineage_names | Public Library of Science |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | PLOS Digital Health |
| locations[0].landing_page_url | https://doi.org/10.1371/journal.pdig.0000972 |
| locations[1].id | pmid:41026797 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | PLOS digital health |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/41026797 |
| locations[2].id | pmh:oai:doaj.org/article:f30b5b73469f4a64bf8c012bdf031da0 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | PLOS Digital Health, Vol 4, Iss 9, p e0000972 (2025) |
| locations[2].landing_page_url | https://doaj.org/article/f30b5b73469f4a64bf8c012bdf031da0 |
| locations[3].id | pmh:oai:europepmc.org:11294041 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306400806 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | Europe PMC (PubMed Central) |
| locations[3].source.host_organization | https://openalex.org/I1303153112 |
| locations[3].source.host_organization_name | European Bioinformatics Institute |
| locations[3].source.host_organization_lineage | https://openalex.org/I1303153112 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/12483252 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5088332216 |
| authorships[0].author.orcid | https://orcid.org/0009-0002-0285-6489 |
| authorships[0].author.display_name | Saul Fuster |
| authorships[0].countries | NO |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I92008406 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Electrical Engineering and Computer Science, University of Stavanger, Stavanger, Norway |
| authorships[0].institutions[0].id | https://openalex.org/I92008406 |
| authorships[0].institutions[0].ror | https://ror.org/02qte9q33 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I92008406 |
| authorships[0].institutions[0].country_code | NO |
| authorships[0].institutions[0].display_name | University of Stavanger |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Saul Fuster |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Department of Electrical Engineering and Computer Science, University of Stavanger, Stavanger, Norway |
| authorships[1].author.id | https://openalex.org/A5031734265 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-2817-3996 |
| authorships[1].author.display_name | Farbod Khoraminia |
| authorships[1].countries | NL |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210149908 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Urology, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, The Netherlands |
| authorships[1].institutions[0].id | https://openalex.org/I4210149908 |
| authorships[1].institutions[0].ror | https://ror.org/03r4m3349 |
| authorships[1].institutions[0].type | healthcare |
| authorships[1].institutions[0].lineage | https://openalex.org/I2801952686, https://openalex.org/I4210149908 |
| authorships[1].institutions[0].country_code | NL |
| authorships[1].institutions[0].display_name | Erasmus MC Cancer Institute |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Farbod Khoraminia |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | Department of Urology, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, The Netherlands |
| authorships[2].author.id | https://openalex.org/A5024176997 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-9726-9393 |
| authorships[2].author.display_name | Julio Silva-Rodríguez |
| authorships[2].affiliations[0].raw_affiliation_string | ÉTS Montréal, Montréal, Québec, Canada |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Julio Silva-Rodríguez |
| authorships[2].is_corresponding | True |
| authorships[2].raw_affiliation_strings | ÉTS Montréal, Montréal, Québec, Canada |
| authorships[3].author.id | https://openalex.org/A5025905653 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-6721-4877 |
| authorships[3].author.display_name | Umay Kiraz |
| authorships[3].countries | NO |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I2800132241 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Pathology, Stavanger University Hospital, Stavanger, Norway |
| authorships[3].affiliations[1].institution_ids | https://openalex.org/I92008406 |
| authorships[3].affiliations[1].raw_affiliation_string | Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger, Norway |
| authorships[3].institutions[0].id | https://openalex.org/I2800132241 |
| authorships[3].institutions[0].ror | https://ror.org/04zn72g03 |
| authorships[3].institutions[0].type | healthcare |
| authorships[3].institutions[0].lineage | https://openalex.org/I2800132241 |
| authorships[3].institutions[0].country_code | NO |
| authorships[3].institutions[0].display_name | Stavanger University Hospital |
| authorships[3].institutions[1].id | https://openalex.org/I92008406 |
| authorships[3].institutions[1].ror | https://ror.org/02qte9q33 |
| authorships[3].institutions[1].type | education |
| authorships[3].institutions[1].lineage | https://openalex.org/I92008406 |
| authorships[3].institutions[1].country_code | NO |
| authorships[3].institutions[1].display_name | University of Stavanger |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Umay Kiraz |
| authorships[3].is_corresponding | True |
| authorships[3].raw_affiliation_strings | Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger, Norway, Department of Pathology, Stavanger University Hospital, Stavanger, Norway |
| authorships[4].author.id | https://openalex.org/A5083000708 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-2176-9102 |
| authorships[4].author.display_name | Geert J.L.H. van Leenders |
| authorships[4].countries | NL |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210149908 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Pathology and Clinical Bioinformatics, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands |
| authorships[4].institutions[0].id | https://openalex.org/I4210149908 |
| authorships[4].institutions[0].ror | https://ror.org/03r4m3349 |
| authorships[4].institutions[0].type | healthcare |
| authorships[4].institutions[0].lineage | https://openalex.org/I2801952686, https://openalex.org/I4210149908 |
| authorships[4].institutions[0].country_code | NL |
| authorships[4].institutions[0].display_name | Erasmus MC Cancer Institute |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Geert J. L. H. van Leenders |
| authorships[4].is_corresponding | True |
| authorships[4].raw_affiliation_strings | Department of Pathology and Clinical Bioinformatics, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands |
| authorships[5].author.id | https://openalex.org/A5033070399 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Trygve Eftestøl |
| authorships[5].countries | NO |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I92008406 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Electrical Engineering and Computer Science, University of Stavanger, Stavanger, Norway |
| authorships[5].institutions[0].id | https://openalex.org/I92008406 |
| authorships[5].institutions[0].ror | https://ror.org/02qte9q33 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I92008406 |
| authorships[5].institutions[0].country_code | NO |
| authorships[5].institutions[0].display_name | University of Stavanger |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Trygve Eftestøl |
| authorships[5].is_corresponding | True |
| authorships[5].raw_affiliation_strings | Department of Electrical Engineering and Computer Science, University of Stavanger, Stavanger, Norway |
| authorships[6].author.id | https://openalex.org/A5043316752 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-0181-3412 |
| authorships[6].author.display_name | Valery Naranjo |
| authorships[6].countries | ES |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I60053951 |
| authorships[6].affiliations[0].raw_affiliation_string | CVBLab, Instituto Universitario de Investigación en Tecnología Centrada en el Ser Humano (HUMAN-tech), Universitat Politècnica de València, Valencia, Spain |
| authorships[6].institutions[0].id | https://openalex.org/I60053951 |
| authorships[6].institutions[0].ror | https://ror.org/01460j859 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I60053951 |
| authorships[6].institutions[0].country_code | ES |
| authorships[6].institutions[0].display_name | Universitat Politècnica de València |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Valery Naranjo |
| authorships[6].is_corresponding | True |
| authorships[6].raw_affiliation_strings | CVBLab, Instituto Universitario de Investigación en Tecnología Centrada en el Ser Humano (HUMAN-tech), Universitat Politècnica de València, Valencia, Spain |
| authorships[7].author.id | https://openalex.org/A5003110329 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-7760-5396 |
| authorships[7].author.display_name | Emiel A. M. Janssen |
| authorships[7].countries | NO |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I92008406 |
| authorships[7].affiliations[0].raw_affiliation_string | Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger, Norway |
| authorships[7].affiliations[1].institution_ids | https://openalex.org/I2800132241 |
| authorships[7].affiliations[1].raw_affiliation_string | Department of Pathology, Stavanger University Hospital, Stavanger, Norway |
| authorships[7].institutions[0].id | https://openalex.org/I2800132241 |
| authorships[7].institutions[0].ror | https://ror.org/04zn72g03 |
| authorships[7].institutions[0].type | healthcare |
| authorships[7].institutions[0].lineage | https://openalex.org/I2800132241 |
| authorships[7].institutions[0].country_code | NO |
| authorships[7].institutions[0].display_name | Stavanger University Hospital |
| authorships[7].institutions[1].id | https://openalex.org/I92008406 |
| authorships[7].institutions[1].ror | https://ror.org/02qte9q33 |
| authorships[7].institutions[1].type | education |
| authorships[7].institutions[1].lineage | https://openalex.org/I92008406 |
| authorships[7].institutions[1].country_code | NO |
| authorships[7].institutions[1].display_name | University of Stavanger |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Emiel A. M. Janssen |
| authorships[7].is_corresponding | True |
| authorships[7].raw_affiliation_strings | Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger, Norway, Department of Pathology, Stavanger University Hospital, Stavanger, Norway |
| authorships[8].author.id | https://openalex.org/A5026058364 |
| authorships[8].author.orcid | |
| authorships[8].author.display_name | Tahlita C.M. Zuiverloon |
| authorships[8].countries | NL |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I4210149908 |
| authorships[8].affiliations[0].raw_affiliation_string | Department of Urology, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, The Netherlands |
| authorships[8].institutions[0].id | https://openalex.org/I4210149908 |
| authorships[8].institutions[0].ror | https://ror.org/03r4m3349 |
| authorships[8].institutions[0].type | healthcare |
| authorships[8].institutions[0].lineage | https://openalex.org/I2801952686, https://openalex.org/I4210149908 |
| authorships[8].institutions[0].country_code | NL |
| authorships[8].institutions[0].display_name | Erasmus MC Cancer Institute |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Tahlita C. M. Zuiverloon |
| authorships[8].is_corresponding | True |
| authorships[8].raw_affiliation_strings | Department of Urology, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, The Netherlands |
| authorships[9].author.id | https://openalex.org/A5068843545 |
| authorships[9].author.orcid | https://orcid.org/0000-0002-8970-0067 |
| authorships[9].author.display_name | Kjersti Engan |
| authorships[9].countries | NO |
| authorships[9].affiliations[0].institution_ids | https://openalex.org/I92008406 |
| authorships[9].affiliations[0].raw_affiliation_string | Department of Electrical Engineering and Computer Science, University of Stavanger, Stavanger, Norway |
| authorships[9].institutions[0].id | https://openalex.org/I92008406 |
| authorships[9].institutions[0].ror | https://ror.org/02qte9q33 |
| authorships[9].institutions[0].type | education |
| authorships[9].institutions[0].lineage | https://openalex.org/I92008406 |
| authorships[9].institutions[0].country_code | NO |
| authorships[9].institutions[0].display_name | University of Stavanger |
| authorships[9].author_position | last |
| authorships[9].raw_author_name | Kjersti Engan |
| authorships[9].is_corresponding | True |
| authorships[9].raw_affiliation_strings | Department of Electrical Engineering and Computer Science, University of Stavanger, Stavanger, Norway |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1371/journal.pdig.0000972 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Self-contrastive weakly supervised learning framework for prognostic prediction using whole slide images |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10552 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.998199999332428 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2730 |
| primary_topic.subfield.display_name | Oncology |
| primary_topic.display_name | Colorectal Cancer Screening and Detection |
| cited_by_count | 0 |
| locations_count | 4 |
| best_oa_location.id | doi:10.1371/journal.pdig.0000972 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210221150 |
| best_oa_location.source.issn | 2767-3170 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2767-3170 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | PLOS Digital Health |
| best_oa_location.source.host_organization | https://openalex.org/P4310315706 |
| best_oa_location.source.host_organization_name | Public Library of Science |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310315706 |
| best_oa_location.source.host_organization_lineage_names | Public Library of Science |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | PLOS Digital Health |
| best_oa_location.landing_page_url | https://doi.org/10.1371/journal.pdig.0000972 |
| primary_location.id | doi:10.1371/journal.pdig.0000972 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210221150 |
| primary_location.source.issn | 2767-3170 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2767-3170 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | PLOS Digital Health |
| primary_location.source.host_organization | https://openalex.org/P4310315706 |
| primary_location.source.host_organization_name | Public Library of Science |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310315706 |
| primary_location.source.host_organization_lineage_names | Public Library of Science |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | PLOS Digital Health |
| primary_location.landing_page_url | https://doi.org/10.1371/journal.pdig.0000972 |
| publication_date | 2025-09-30 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W3160261825, https://openalex.org/W2470965540, https://openalex.org/W3198719997, https://openalex.org/W3210403278, https://openalex.org/W2162130153, https://openalex.org/W2270022169, https://openalex.org/W3121943121, https://openalex.org/W4293393555, https://openalex.org/W2111547563, https://openalex.org/W2125506656, https://openalex.org/W4310172146, https://openalex.org/W3211323346, https://openalex.org/W4377966928, https://openalex.org/W2971376088, https://openalex.org/W3119690984, https://openalex.org/W4283020223, https://openalex.org/W4386362672, https://openalex.org/W3135547872, https://openalex.org/W3089090082, https://openalex.org/W4312765357, https://openalex.org/W2956228567, https://openalex.org/W2945807221, https://openalex.org/W3196257929, https://openalex.org/W3043535018, https://openalex.org/W4388210672, https://openalex.org/W4367295871, https://openalex.org/W4391451171, https://openalex.org/W3212889265, https://openalex.org/W4293578078, https://openalex.org/W3202902586, https://openalex.org/W4286007859, https://openalex.org/W3176719058, https://openalex.org/W4283696432, https://openalex.org/W3093253397, https://openalex.org/W4388117865, https://openalex.org/W2168230322, https://openalex.org/W2519490965, https://openalex.org/W3203593435, https://openalex.org/W2110119381, https://openalex.org/W2962767316, https://openalex.org/W4390305783, https://openalex.org/W2163605009, https://openalex.org/W4321487874, https://openalex.org/W4287812705 |
| referenced_works_count | 44 |
| abstract_inverted_index.a | 2, 28, 60, 66, 78, 86, 126, 162 |
| abstract_inverted_index.To | 54 |
| abstract_inverted_index.We | 0 |
| abstract_inverted_index.an | 148, 171 |
| abstract_inverted_index.as | 31, 141, 170 |
| abstract_inverted_index.in | 51, 112 |
| abstract_inverted_index.is | 118 |
| abstract_inverted_index.of | 8, 21, 65, 75, 98, 101, 150, 177 |
| abstract_inverted_index.on | 121, 174 |
| abstract_inverted_index.to | 12, 131 |
| abstract_inverted_index.we | 58 |
| abstract_inverted_index.AUC | 149 |
| abstract_inverted_index.Our | 93 |
| abstract_inverted_index.The | 116 |
| abstract_inverted_index.and | 39, 85, 107, 125, 152, 156 |
| abstract_inverted_index.are | 36, 47 |
| abstract_inverted_index.for | 16, 73, 82, 154, 161, 181 |
| abstract_inverted_index.not | 48 |
| abstract_inverted_index.our | 144 |
| abstract_inverted_index.the | 6, 18, 32, 40, 52, 96, 104, 175 |
| abstract_inverted_index.use | 142 |
| abstract_inverted_index.best | 145 |
| abstract_inverted_index.data | 124, 164 |
| abstract_inverted_index.deep | 9 |
| abstract_inverted_index.into | 5 |
| abstract_inverted_index.more | 136 |
| abstract_inverted_index.must | 42 |
| abstract_inverted_index.that | 46 |
| abstract_inverted_index.this | 56, 167 |
| abstract_inverted_index.0.678 | 153 |
| abstract_inverted_index.0.721 | 151 |
| abstract_inverted_index.based | 69 |
| abstract_inverted_index.case, | 143 |
| abstract_inverted_index.image | 179 |
| abstract_inverted_index.model | 41 |
| abstract_inverted_index.novel | 61 |
| abstract_inverted_index.poses | 27 |
| abstract_inverted_index.study | 94 |
| abstract_inverted_index.task. | 129 |
| abstract_inverted_index.tasks | 134 |
| abstract_inverted_index.truth | 34 |
| abstract_inverted_index.weak, | 38 |
| abstract_inverted_index.yield | 147 |
| abstract_inverted_index.become | 135 |
| abstract_inverted_index.cancer | 140 |
| abstract_inverted_index.events | 45 |
| abstract_inverted_index.future | 44 |
| abstract_inverted_index.ground | 33 |
| abstract_inverted_index.image. | 53 |
| abstract_inverted_index.images | 15 |
| abstract_inverted_index.labels | 35 |
| abstract_inverted_index.models | 146 |
| abstract_inverted_index.module | 81 |
| abstract_inverted_index.nested | 87 |
| abstract_inverted_index.region | 74 |
| abstract_inverted_index.serves | 169 |
| abstract_inverted_index.slides | 106 |
| abstract_inverted_index.tissue | 70 |
| abstract_inverted_index.unique | 29 |
| abstract_inverted_index.within | 103 |
| abstract_inverted_index.address | 55 |
| abstract_inverted_index.analyze | 13 |
| abstract_inverted_index.bladder | 139 |
| abstract_inverted_index.cohort. | 165 |
| abstract_inverted_index.diverse | 109 |
| abstract_inverted_index.feature | 83 |
| abstract_inverted_index.initial | 172 |
| abstract_inverted_index.methods | 111 |
| abstract_inverted_index.module. | 92 |
| abstract_inverted_index.network | 68 |
| abstract_inverted_index.outcome | 158, 183 |
| abstract_inverted_index.present | 1 |
| abstract_inverted_index.private | 163 |
| abstract_inverted_index.propose | 59 |
| abstract_inverted_index.regions | 100 |
| abstract_inverted_index.simpler | 127 |
| abstract_inverted_index.various | 99 |
| abstract_inverted_index.analysis | 180 |
| abstract_inverted_index.clinical | 114 |
| abstract_inverted_index.directly | 49 |
| abstract_inverted_index.exploits | 108 |
| abstract_inverted_index.explores | 95 |
| abstract_inverted_index.instance | 89 |
| abstract_inverted_index.interest | 76, 102 |
| abstract_inverted_index.learning | 10, 80, 90, 110 |
| abstract_inverted_index.multiple | 88 |
| abstract_inverted_index.pipeline | 117 |
| abstract_inverted_index.research | 168 |
| abstract_inverted_index.Employing | 138 |
| abstract_inverted_index.algorithm | 72 |
| abstract_inverted_index.automated | 22 |
| abstract_inverted_index.challenge | 20, 30 |
| abstract_inverted_index.framework | 63 |
| abstract_inverted_index.generated | 123 |
| abstract_inverted_index.initially | 119 |
| abstract_inverted_index.treatment | 157, 182 |
| abstract_inverted_index.validated | 120 |
| abstract_inverted_index.Prognostic | 25 |
| abstract_inverted_index.addressing | 17 |
| abstract_inverted_index.anticipate | 43 |
| abstract_inverted_index.challenge, | 57 |
| abstract_inverted_index.comprising | 64 |
| abstract_inverted_index.diagnostic | 128 |
| abstract_inverted_index.inherently | 37 |
| abstract_inverted_index.observable | 50 |
| abstract_inverted_index.pioneering | 3 |
| abstract_inverted_index.prediction | 26, 159 |
| abstract_inverted_index.prognostic | 23, 132 |
| abstract_inverted_index.real-world | 113 |
| abstract_inverted_index.recurrence | 155 |
| abstract_inverted_index.scenarios. | 115 |
| abstract_inverted_index.techniques | 11 |
| abstract_inverted_index.three-part | 62 |
| abstract_inverted_index.Altogether, | 166 |
| abstract_inverted_index.application | 7 |
| abstract_inverted_index.contrastive | 79 |
| abstract_inverted_index.extraction, | 84 |
| abstract_inverted_index.prediction, | 133 |
| abstract_inverted_index.prediction. | 24, 184 |
| abstract_inverted_index.substantial | 19 |
| abstract_inverted_index.artificially | 122 |
| abstract_inverted_index.challenging. | 137 |
| abstract_inverted_index.delineation, | 77 |
| abstract_inverted_index.respectively | 160 |
| abstract_inverted_index.segmentation | 71 |
| abstract_inverted_index.shortcomings | 176 |
| abstract_inverted_index.significance | 97 |
| abstract_inverted_index.Transitioning | 130 |
| abstract_inverted_index.convolutional | 67 |
| abstract_inverted_index.investigation | 4, 173 |
| abstract_inverted_index.classification | 91 |
| abstract_inverted_index.histopathological | 14, 105, 178 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5026058364, https://openalex.org/A5043316752, https://openalex.org/A5025905653, https://openalex.org/A5003110329, https://openalex.org/A5068843545, https://openalex.org/A5031734265, https://openalex.org/A5033070399, https://openalex.org/A5024176997, https://openalex.org/A5083000708, https://openalex.org/A5088332216 |
| countries_distinct_count | 3 |
| institutions_distinct_count | 10 |
| corresponding_institution_ids | https://openalex.org/I2800132241, https://openalex.org/I4210149908, https://openalex.org/I60053951, https://openalex.org/I92008406 |
| citation_normalized_percentile.value | 0.58621886 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |