Self-Supervised Encoders Are Better Transfer Learners in Remote Sensing Applications Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.3390/rs14215500
Transfer learning has been shown to be an effective method for achieving high-performance models when applying deep learning to remote sensing data. Recent research has demonstrated that representations learned through self-supervision transfer better than representations learned on supervised classification tasks. However, little research has focused explicitly on applying self-supervised encoders to remote sensing tasks. Using three diverse remote sensing datasets, we compared the performance of encoders pre-trained through both supervision and self-supervision on ImageNet, then fine-tuned on a final remote sensing task. Furthermore, we explored whether performance benefited from further pre-training on remote sensing data. Our experiments used SwAV due to its comparably lower computational requirements, as this method would prove most easily replicable by practitioners. We show that an encoder pre-trained on ImageNet using self-supervision transfers better than one pre-trained using supervision on three diverse remote sensing applications. Moreover, self-supervision on the target data alone as a pre-training step seldom boosts performance beyond this transferred encoder. We attribute this inefficacy to the lower diversity and size of remote sensing datasets, compared to ImageNet. In conclusion, we recommend that researchers use self-supervised representations for transfer learning on remote sensing data and that future research should focus on ways to increase performance further using self-supervision.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/rs14215500
- https://www.mdpi.com/2072-4292/14/21/5500/pdf?version=1667274284
- OA Status
- gold
- Cited By
- 12
- References
- 36
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4307925100
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4307925100Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/rs14215500Digital Object Identifier
- Title
-
Self-Supervised Encoders Are Better Transfer Learners in Remote Sensing ApplicationsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-11-01Full publication date if available
- Authors
-
Zachary D. Calhoun, Saad Lahrichi, Simiao Ren, Jordan M. Malof, Kyle BradburyList of authors in order
- Landing page
-
https://doi.org/10.3390/rs14215500Publisher landing page
- PDF URL
-
https://www.mdpi.com/2072-4292/14/21/5500/pdf?version=1667274284Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2072-4292/14/21/5500/pdf?version=1667274284Direct OA link when available
- Concepts
-
Computer science, Encoder, Task (project management), Transfer of learning, Artificial intelligence, Focus (optics), Machine learning, Remote sensing, Systems engineering, Engineering, Operating system, Optics, Geology, PhysicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
12Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 5, 2024: 6, 2023: 1Per-year citation counts (last 5 years)
- References (count)
-
36Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4307925100 |
|---|---|
| doi | https://doi.org/10.3390/rs14215500 |
| ids.doi | https://doi.org/10.3390/rs14215500 |
| ids.openalex | https://openalex.org/W4307925100 |
| fwci | 1.67823629 |
| type | article |
| title | Self-Supervised Encoders Are Better Transfer Learners in Remote Sensing Applications |
| biblio.issue | 21 |
| biblio.volume | 14 |
| biblio.last_page | 5500 |
| biblio.first_page | 5500 |
| topics[0].id | https://openalex.org/T10689 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9994999766349792 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2214 |
| topics[0].subfield.display_name | Media Technology |
| topics[0].display_name | Remote-Sensing Image Classification |
| topics[1].id | https://openalex.org/T11307 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9952999949455261 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Domain Adaptation and Few-Shot Learning |
| topics[2].id | https://openalex.org/T10111 |
| topics[2].field.id | https://openalex.org/fields/23 |
| topics[2].field.display_name | Environmental Science |
| topics[2].score | 0.994700014591217 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2303 |
| topics[2].subfield.display_name | Ecology |
| topics[2].display_name | Remote Sensing in Agriculture |
| is_xpac | False |
| apc_list.value | 2500 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2707 |
| apc_paid.value | 2500 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2707 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8280330896377563 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C118505674 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7663156986236572 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q42586063 |
| concepts[1].display_name | Encoder |
| concepts[2].id | https://openalex.org/C2780451532 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6430447697639465 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q759676 |
| concepts[2].display_name | Task (project management) |
| concepts[3].id | https://openalex.org/C150899416 |
| concepts[3].level | 2 |
| concepts[3].score | 0.63222336769104 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1820378 |
| concepts[3].display_name | Transfer of learning |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.4720110595226288 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C192209626 |
| concepts[5].level | 2 |
| concepts[5].score | 0.45290499925613403 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q190909 |
| concepts[5].display_name | Focus (optics) |
| concepts[6].id | https://openalex.org/C119857082 |
| concepts[6].level | 1 |
| concepts[6].score | 0.4525850713253021 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[6].display_name | Machine learning |
| concepts[7].id | https://openalex.org/C62649853 |
| concepts[7].level | 1 |
| concepts[7].score | 0.375951886177063 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q199687 |
| concepts[7].display_name | Remote sensing |
| concepts[8].id | https://openalex.org/C201995342 |
| concepts[8].level | 1 |
| concepts[8].score | 0.10550928115844727 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q682496 |
| concepts[8].display_name | Systems engineering |
| concepts[9].id | https://openalex.org/C127413603 |
| concepts[9].level | 0 |
| concepts[9].score | 0.05568397045135498 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[9].display_name | Engineering |
| concepts[10].id | https://openalex.org/C111919701 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[10].display_name | Operating system |
| concepts[11].id | https://openalex.org/C120665830 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q14620 |
| concepts[11].display_name | Optics |
| concepts[12].id | https://openalex.org/C127313418 |
| concepts[12].level | 0 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[12].display_name | Geology |
| concepts[13].id | https://openalex.org/C121332964 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[13].display_name | Physics |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.8280330896377563 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/encoder |
| keywords[1].score | 0.7663156986236572 |
| keywords[1].display_name | Encoder |
| keywords[2].id | https://openalex.org/keywords/task |
| keywords[2].score | 0.6430447697639465 |
| keywords[2].display_name | Task (project management) |
| keywords[3].id | https://openalex.org/keywords/transfer-of-learning |
| keywords[3].score | 0.63222336769104 |
| keywords[3].display_name | Transfer of learning |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.4720110595226288 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/focus |
| keywords[5].score | 0.45290499925613403 |
| keywords[5].display_name | Focus (optics) |
| keywords[6].id | https://openalex.org/keywords/machine-learning |
| keywords[6].score | 0.4525850713253021 |
| keywords[6].display_name | Machine learning |
| keywords[7].id | https://openalex.org/keywords/remote-sensing |
| keywords[7].score | 0.375951886177063 |
| keywords[7].display_name | Remote sensing |
| keywords[8].id | https://openalex.org/keywords/systems-engineering |
| keywords[8].score | 0.10550928115844727 |
| keywords[8].display_name | Systems engineering |
| keywords[9].id | https://openalex.org/keywords/engineering |
| keywords[9].score | 0.05568397045135498 |
| keywords[9].display_name | Engineering |
| language | en |
| locations[0].id | doi:10.3390/rs14215500 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S43295729 |
| locations[0].source.issn | 2072-4292 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2072-4292 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Remote Sensing |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2072-4292/14/21/5500/pdf?version=1667274284 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Remote Sensing |
| locations[0].landing_page_url | https://doi.org/10.3390/rs14215500 |
| locations[1].id | pmh:oai:doaj.org/article:5916a8fc56fc44c891571b4d7925fc72 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | cc-by-sa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Remote Sensing, Vol 14, Iss 21, p 5500 (2022) |
| locations[1].landing_page_url | https://doaj.org/article/5916a8fc56fc44c891571b4d7925fc72 |
| locations[2].id | pmh:oai:mdpi.com:/2072-4292/14/21/5500/ |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400947 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | MDPI (MDPI AG) |
| locations[2].source.host_organization | https://openalex.org/I4210097602 |
| locations[2].source.host_organization_name | Multidisciplinary Digital Publishing Institute (Switzerland) |
| locations[2].source.host_organization_lineage | https://openalex.org/I4210097602 |
| locations[2].license | cc-by |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Remote Sensing; Volume 14; Issue 21; Pages: 5500 |
| locations[2].landing_page_url | https://dx.doi.org/10.3390/rs14215500 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5064701678 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-8680-1527 |
| authorships[0].author.display_name | Zachary D. Calhoun |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I170897317 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Civil and Environmental Engineering, Duke University, 121 Hudson Hall, Science Dr, Durham, NC 27708, USA |
| authorships[0].institutions[0].id | https://openalex.org/I170897317 |
| authorships[0].institutions[0].ror | https://ror.org/00py81415 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I170897317 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Duke University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zachary D. Calhoun |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Department of Civil and Environmental Engineering, Duke University, 121 Hudson Hall, Science Dr, Durham, NC 27708, USA |
| authorships[1].author.id | https://openalex.org/A5075166938 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-2249-9255 |
| authorships[1].author.display_name | Saad Lahrichi |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210159968 |
| authorships[1].affiliations[0].raw_affiliation_string | Division of Natural and Applied Sciences, Duke Kunshan University, No. 8 Duke Ave., Kunshan 215316, China |
| authorships[1].institutions[0].id | https://openalex.org/I4210159968 |
| authorships[1].institutions[0].ror | https://ror.org/04sr5ys16 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I170897317, https://openalex.org/I37461747, https://openalex.org/I4210159968 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Duke Kunshan University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Saad Lahrichi |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Division of Natural and Applied Sciences, Duke Kunshan University, No. 8 Duke Ave., Kunshan 215316, China |
| authorships[2].author.id | https://openalex.org/A5048895233 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-7113-9208 |
| authorships[2].author.display_name | Simiao Ren |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I170897317 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708, USA |
| authorships[2].institutions[0].id | https://openalex.org/I170897317 |
| authorships[2].institutions[0].ror | https://ror.org/00py81415 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I170897317 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Duke University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Simiao Ren |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708, USA |
| authorships[3].author.id | https://openalex.org/A5007239332 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-7851-4920 |
| authorships[3].author.display_name | Jordan M. Malof |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I6750721 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Computer Science, University of Montana, Missoula, MT 59812, USA |
| authorships[3].institutions[0].id | https://openalex.org/I6750721 |
| authorships[3].institutions[0].ror | https://ror.org/0078xmk34 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I6750721 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | University of Montana |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Jordan M. Malof |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Computer Science, University of Montana, Missoula, MT 59812, USA |
| authorships[4].author.id | https://openalex.org/A5054438743 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-9847-0243 |
| authorships[4].author.display_name | Kyle Bradbury |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I170897317 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708, USA |
| authorships[4].affiliations[1].institution_ids | https://openalex.org/I170897317 |
| authorships[4].affiliations[1].raw_affiliation_string | Nicholas Institute for Energy, Environment & Sustainability, Duke University, Durham, NC 27708, USA |
| authorships[4].institutions[0].id | https://openalex.org/I170897317 |
| authorships[4].institutions[0].ror | https://ror.org/00py81415 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I170897317 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | Duke University |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Kyle Bradbury |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708, USA, Nicholas Institute for Energy, Environment & Sustainability, Duke University, Durham, NC 27708, USA |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2072-4292/14/21/5500/pdf?version=1667274284 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2022-11-06T00:00:00 |
| display_name | Self-Supervised Encoders Are Better Transfer Learners in Remote Sensing Applications |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10689 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9994999766349792 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2214 |
| primary_topic.subfield.display_name | Media Technology |
| primary_topic.display_name | Remote-Sensing Image Classification |
| related_works | https://openalex.org/W4390516098, https://openalex.org/W2181948922, https://openalex.org/W2384362569, https://openalex.org/W2012531322, https://openalex.org/W3201126466, https://openalex.org/W4205302943, https://openalex.org/W2119949815, https://openalex.org/W2561132942, https://openalex.org/W2142795561, https://openalex.org/W3155418658 |
| cited_by_count | 12 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 5 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 6 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 1 |
| locations_count | 3 |
| best_oa_location.id | doi:10.3390/rs14215500 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S43295729 |
| best_oa_location.source.issn | 2072-4292 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2072-4292 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Remote Sensing |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2072-4292/14/21/5500/pdf?version=1667274284 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Remote Sensing |
| best_oa_location.landing_page_url | https://doi.org/10.3390/rs14215500 |
| primary_location.id | doi:10.3390/rs14215500 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S43295729 |
| primary_location.source.issn | 2072-4292 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2072-4292 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Remote Sensing |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2072-4292/14/21/5500/pdf?version=1667274284 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Remote Sensing |
| primary_location.landing_page_url | https://doi.org/10.3390/rs14215500 |
| publication_date | 2022-11-01 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W6762744983, https://openalex.org/W3098643429, https://openalex.org/W6750438185, https://openalex.org/W2133774033, https://openalex.org/W2954996726, https://openalex.org/W3009522002, https://openalex.org/W2963578416, https://openalex.org/W2996836954, https://openalex.org/W2117539524, https://openalex.org/W3176276772, https://openalex.org/W4281664960, https://openalex.org/W2785325870, https://openalex.org/W2564755587, https://openalex.org/W2963420272, https://openalex.org/W2606797870, https://openalex.org/W3005680577, https://openalex.org/W3036982689, https://openalex.org/W6779326418, https://openalex.org/W2802310032, https://openalex.org/W4214644404, https://openalex.org/W3144483443, https://openalex.org/W3136987292, https://openalex.org/W6779997284, https://openalex.org/W2194775991, https://openalex.org/W4301802631, https://openalex.org/W2804962028, https://openalex.org/W2962914239, https://openalex.org/W2609402060, https://openalex.org/W2394812591, https://openalex.org/W3036779102, https://openalex.org/W3035164673, https://openalex.org/W3159481202, https://openalex.org/W2944378183, https://openalex.org/W2794954404, https://openalex.org/W3035060554, https://openalex.org/W3036224891 |
| referenced_works_count | 36 |
| abstract_inverted_index.a | 77, 147 |
| abstract_inverted_index.In | 174 |
| abstract_inverted_index.We | 116, 157 |
| abstract_inverted_index.an | 7, 119 |
| abstract_inverted_index.as | 106, 146 |
| abstract_inverted_index.be | 6 |
| abstract_inverted_index.by | 114 |
| abstract_inverted_index.of | 64, 167 |
| abstract_inverted_index.on | 36, 46, 72, 76, 91, 122, 133, 141, 186, 196 |
| abstract_inverted_index.to | 5, 18, 50, 100, 161, 172, 198 |
| abstract_inverted_index.we | 60, 83, 176 |
| abstract_inverted_index.Our | 95 |
| abstract_inverted_index.and | 70, 165, 190 |
| abstract_inverted_index.due | 99 |
| abstract_inverted_index.for | 10, 183 |
| abstract_inverted_index.has | 2, 24, 43 |
| abstract_inverted_index.its | 101 |
| abstract_inverted_index.one | 129 |
| abstract_inverted_index.the | 62, 142, 162 |
| abstract_inverted_index.use | 180 |
| abstract_inverted_index.SwAV | 98 |
| abstract_inverted_index.been | 3 |
| abstract_inverted_index.both | 68 |
| abstract_inverted_index.data | 144, 189 |
| abstract_inverted_index.deep | 16 |
| abstract_inverted_index.from | 88 |
| abstract_inverted_index.most | 111 |
| abstract_inverted_index.show | 117 |
| abstract_inverted_index.size | 166 |
| abstract_inverted_index.step | 149 |
| abstract_inverted_index.than | 33, 128 |
| abstract_inverted_index.that | 26, 118, 178, 191 |
| abstract_inverted_index.then | 74 |
| abstract_inverted_index.this | 107, 154, 159 |
| abstract_inverted_index.used | 97 |
| abstract_inverted_index.ways | 197 |
| abstract_inverted_index.when | 14 |
| abstract_inverted_index.Using | 54 |
| abstract_inverted_index.alone | 145 |
| abstract_inverted_index.data. | 21, 94 |
| abstract_inverted_index.final | 78 |
| abstract_inverted_index.focus | 195 |
| abstract_inverted_index.lower | 103, 163 |
| abstract_inverted_index.prove | 110 |
| abstract_inverted_index.shown | 4 |
| abstract_inverted_index.task. | 81 |
| abstract_inverted_index.three | 55, 134 |
| abstract_inverted_index.using | 124, 131, 202 |
| abstract_inverted_index.would | 109 |
| abstract_inverted_index.Recent | 22 |
| abstract_inverted_index.better | 32, 127 |
| abstract_inverted_index.beyond | 153 |
| abstract_inverted_index.boosts | 151 |
| abstract_inverted_index.easily | 112 |
| abstract_inverted_index.future | 192 |
| abstract_inverted_index.little | 41 |
| abstract_inverted_index.method | 9, 108 |
| abstract_inverted_index.models | 13 |
| abstract_inverted_index.remote | 19, 51, 57, 79, 92, 136, 168, 187 |
| abstract_inverted_index.seldom | 150 |
| abstract_inverted_index.should | 194 |
| abstract_inverted_index.target | 143 |
| abstract_inverted_index.tasks. | 39, 53 |
| abstract_inverted_index.diverse | 56, 135 |
| abstract_inverted_index.encoder | 120 |
| abstract_inverted_index.focused | 44 |
| abstract_inverted_index.further | 89, 201 |
| abstract_inverted_index.learned | 28, 35 |
| abstract_inverted_index.sensing | 20, 52, 58, 80, 93, 137, 169, 188 |
| abstract_inverted_index.through | 29, 67 |
| abstract_inverted_index.whether | 85 |
| abstract_inverted_index.However, | 40 |
| abstract_inverted_index.ImageNet | 123 |
| abstract_inverted_index.Transfer | 0 |
| abstract_inverted_index.applying | 15, 47 |
| abstract_inverted_index.compared | 61, 171 |
| abstract_inverted_index.encoder. | 156 |
| abstract_inverted_index.encoders | 49, 65 |
| abstract_inverted_index.explored | 84 |
| abstract_inverted_index.increase | 199 |
| abstract_inverted_index.learning | 1, 17, 185 |
| abstract_inverted_index.research | 23, 42, 193 |
| abstract_inverted_index.transfer | 31, 184 |
| abstract_inverted_index.ImageNet, | 73 |
| abstract_inverted_index.ImageNet. | 173 |
| abstract_inverted_index.Moreover, | 139 |
| abstract_inverted_index.achieving | 11 |
| abstract_inverted_index.attribute | 158 |
| abstract_inverted_index.benefited | 87 |
| abstract_inverted_index.datasets, | 59, 170 |
| abstract_inverted_index.diversity | 164 |
| abstract_inverted_index.effective | 8 |
| abstract_inverted_index.recommend | 177 |
| abstract_inverted_index.transfers | 126 |
| abstract_inverted_index.comparably | 102 |
| abstract_inverted_index.explicitly | 45 |
| abstract_inverted_index.fine-tuned | 75 |
| abstract_inverted_index.inefficacy | 160 |
| abstract_inverted_index.replicable | 113 |
| abstract_inverted_index.supervised | 37 |
| abstract_inverted_index.conclusion, | 175 |
| abstract_inverted_index.experiments | 96 |
| abstract_inverted_index.performance | 63, 86, 152, 200 |
| abstract_inverted_index.pre-trained | 66, 121, 130 |
| abstract_inverted_index.researchers | 179 |
| abstract_inverted_index.supervision | 69, 132 |
| abstract_inverted_index.transferred | 155 |
| abstract_inverted_index.Furthermore, | 82 |
| abstract_inverted_index.demonstrated | 25 |
| abstract_inverted_index.pre-training | 90, 148 |
| abstract_inverted_index.applications. | 138 |
| abstract_inverted_index.computational | 104 |
| abstract_inverted_index.requirements, | 105 |
| abstract_inverted_index.classification | 38 |
| abstract_inverted_index.practitioners. | 115 |
| abstract_inverted_index.representations | 27, 34, 182 |
| abstract_inverted_index.self-supervised | 48, 181 |
| abstract_inverted_index.high-performance | 12 |
| abstract_inverted_index.self-supervision | 30, 71, 125, 140 |
| abstract_inverted_index.self-supervision. | 203 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 89 |
| corresponding_author_ids | https://openalex.org/A5064701678 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 5 |
| corresponding_institution_ids | https://openalex.org/I170897317 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/4 |
| sustainable_development_goals[0].score | 0.5899999737739563 |
| sustainable_development_goals[0].display_name | Quality Education |
| citation_normalized_percentile.value | 0.83575884 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |