Self-Supervised Human Depth Estimation from Monocular Videos Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2005.03358
Previous methods on estimating detailed human depth often require supervised training with `ground truth' depth data. This paper presents a self-supervised method that can be trained on YouTube videos without known depth, which makes training data collection simple and improves the generalization of the learned network. The self-supervised learning is achieved by minimizing a photo-consistency loss, which is evaluated between a video frame and its neighboring frames warped according to the estimated depth and the 3D non-rigid motion of the human body. To solve this non-rigid motion, we first estimate a rough SMPL model at each video frame and compute the non-rigid body motion accordingly, which enables self-supervised learning on estimating the shape details. Experiments demonstrate that our method enjoys better generalization and performs much better on data in the wild.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2005.03358
- https://arxiv.org/pdf/2005.03358
- OA Status
- green
- Cited By
- 2
- References
- 52
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3022363180
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3022363180Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2005.03358Digital Object Identifier
- Title
-
Self-Supervised Human Depth Estimation from Monocular VideosWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-05-07Full publication date if available
- Authors
-
Feitong Tan, Hao Zhu, Zhaopeng Cui, Siyu Zhu, Marc Pollefeys, Ping TanList of authors in order
- Landing page
-
https://arxiv.org/abs/2005.03358Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2005.03358Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2005.03358Direct OA link when available
- Concepts
-
Generalization, Computer science, Artificial intelligence, Monocular, Consistency (knowledge bases), Ground truth, Motion (physics), Computer vision, Frame (networking), Motion estimation, Supervised learning, Pattern recognition (psychology), Machine learning, Mathematics, Artificial neural network, Telecommunications, Mathematical analysisTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2023: 1, 2021: 1Per-year citation counts (last 5 years)
- References (count)
-
52Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3022363180 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2005.03358 |
| ids.doi | https://doi.org/10.48550/arxiv.2005.03358 |
| ids.mag | 3022363180 |
| ids.openalex | https://openalex.org/W3022363180 |
| fwci | |
| type | preprint |
| title | Self-Supervised Human Depth Estimation from Monocular Videos |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10531 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9990000128746033 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Advanced Vision and Imaging |
| topics[1].id | https://openalex.org/T10812 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9972000122070312 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Human Pose and Action Recognition |
| topics[2].id | https://openalex.org/T11227 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9950000047683716 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2712 |
| topics[2].subfield.display_name | Endocrinology, Diabetes and Metabolism |
| topics[2].display_name | Diabetic Foot Ulcer Assessment and Management |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C177148314 |
| concepts[0].level | 2 |
| concepts[0].score | 0.816591739654541 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q170084 |
| concepts[0].display_name | Generalization |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7035365104675293 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.6942557096481323 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C65909025 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6787186861038208 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1945033 |
| concepts[3].display_name | Monocular |
| concepts[4].id | https://openalex.org/C2776436953 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6727590560913086 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q5163215 |
| concepts[4].display_name | Consistency (knowledge bases) |
| concepts[5].id | https://openalex.org/C146849305 |
| concepts[5].level | 2 |
| concepts[5].score | 0.6440423727035522 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q370766 |
| concepts[5].display_name | Ground truth |
| concepts[6].id | https://openalex.org/C104114177 |
| concepts[6].level | 2 |
| concepts[6].score | 0.6321413516998291 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q79782 |
| concepts[6].display_name | Motion (physics) |
| concepts[7].id | https://openalex.org/C31972630 |
| concepts[7].level | 1 |
| concepts[7].score | 0.5328028202056885 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[7].display_name | Computer vision |
| concepts[8].id | https://openalex.org/C126042441 |
| concepts[8].level | 2 |
| concepts[8].score | 0.532601535320282 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1324888 |
| concepts[8].display_name | Frame (networking) |
| concepts[9].id | https://openalex.org/C10161872 |
| concepts[9].level | 2 |
| concepts[9].score | 0.44331681728363037 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q557891 |
| concepts[9].display_name | Motion estimation |
| concepts[10].id | https://openalex.org/C136389625 |
| concepts[10].level | 3 |
| concepts[10].score | 0.4274716377258301 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q334384 |
| concepts[10].display_name | Supervised learning |
| concepts[11].id | https://openalex.org/C153180895 |
| concepts[11].level | 2 |
| concepts[11].score | 0.35219916701316833 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[11].display_name | Pattern recognition (psychology) |
| concepts[12].id | https://openalex.org/C119857082 |
| concepts[12].level | 1 |
| concepts[12].score | 0.34574830532073975 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[12].display_name | Machine learning |
| concepts[13].id | https://openalex.org/C33923547 |
| concepts[13].level | 0 |
| concepts[13].score | 0.22880473732948303 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[13].display_name | Mathematics |
| concepts[14].id | https://openalex.org/C50644808 |
| concepts[14].level | 2 |
| concepts[14].score | 0.21575018763542175 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[14].display_name | Artificial neural network |
| concepts[15].id | https://openalex.org/C76155785 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[15].display_name | Telecommunications |
| concepts[16].id | https://openalex.org/C134306372 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[16].display_name | Mathematical analysis |
| keywords[0].id | https://openalex.org/keywords/generalization |
| keywords[0].score | 0.816591739654541 |
| keywords[0].display_name | Generalization |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7035365104675293 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.6942557096481323 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/monocular |
| keywords[3].score | 0.6787186861038208 |
| keywords[3].display_name | Monocular |
| keywords[4].id | https://openalex.org/keywords/consistency |
| keywords[4].score | 0.6727590560913086 |
| keywords[4].display_name | Consistency (knowledge bases) |
| keywords[5].id | https://openalex.org/keywords/ground-truth |
| keywords[5].score | 0.6440423727035522 |
| keywords[5].display_name | Ground truth |
| keywords[6].id | https://openalex.org/keywords/motion |
| keywords[6].score | 0.6321413516998291 |
| keywords[6].display_name | Motion (physics) |
| keywords[7].id | https://openalex.org/keywords/computer-vision |
| keywords[7].score | 0.5328028202056885 |
| keywords[7].display_name | Computer vision |
| keywords[8].id | https://openalex.org/keywords/frame |
| keywords[8].score | 0.532601535320282 |
| keywords[8].display_name | Frame (networking) |
| keywords[9].id | https://openalex.org/keywords/motion-estimation |
| keywords[9].score | 0.44331681728363037 |
| keywords[9].display_name | Motion estimation |
| keywords[10].id | https://openalex.org/keywords/supervised-learning |
| keywords[10].score | 0.4274716377258301 |
| keywords[10].display_name | Supervised learning |
| keywords[11].id | https://openalex.org/keywords/pattern-recognition |
| keywords[11].score | 0.35219916701316833 |
| keywords[11].display_name | Pattern recognition (psychology) |
| keywords[12].id | https://openalex.org/keywords/machine-learning |
| keywords[12].score | 0.34574830532073975 |
| keywords[12].display_name | Machine learning |
| keywords[13].id | https://openalex.org/keywords/mathematics |
| keywords[13].score | 0.22880473732948303 |
| keywords[13].display_name | Mathematics |
| keywords[14].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[14].score | 0.21575018763542175 |
| keywords[14].display_name | Artificial neural network |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2005.03358 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2005.03358 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2005.03358 |
| locations[1].id | doi:10.48550/arxiv.2005.03358 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2005.03358 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5025919556 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-7606-1331 |
| authorships[0].author.display_name | Feitong Tan |
| authorships[0].countries | CA |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I18014758 |
| authorships[0].affiliations[0].raw_affiliation_string | [Simon Fraser University] |
| authorships[0].institutions[0].id | https://openalex.org/I18014758 |
| authorships[0].institutions[0].ror | https://ror.org/0213rcc28 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I18014758 |
| authorships[0].institutions[0].country_code | CA |
| authorships[0].institutions[0].display_name | Simon Fraser University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Feitong Tan |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | [Simon Fraser University] |
| authorships[1].author.id | https://openalex.org/A5043239430 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-1596-4366 |
| authorships[1].author.display_name | Hao Zhu |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I881766915 |
| authorships[1].affiliations[0].raw_affiliation_string | (Nanjing University) |
| authorships[1].institutions[0].id | https://openalex.org/I881766915 |
| authorships[1].institutions[0].ror | https://ror.org/01rxvg760 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I881766915 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Nanjing University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Hao Zhu |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | (Nanjing University) |
| authorships[2].author.id | https://openalex.org/A5075311772 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-7130-439X |
| authorships[2].author.display_name | Zhaopeng Cui |
| authorships[2].countries | CH |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I35440088 |
| authorships[2].affiliations[0].raw_affiliation_string | ETH Zürich |
| authorships[2].institutions[0].id | https://openalex.org/I35440088 |
| authorships[2].institutions[0].ror | https://ror.org/05a28rw58 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I2799323385, https://openalex.org/I35440088 |
| authorships[2].institutions[0].country_code | CH |
| authorships[2].institutions[0].display_name | ETH Zurich |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Zhaopeng Cui |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | ETH Zürich |
| authorships[3].author.id | https://openalex.org/A5013549550 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-0293-0044 |
| authorships[3].author.display_name | Siyu Zhu |
| authorships[3].affiliations[0].raw_affiliation_string | [Alibaba AI Labs] |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Siyu Zhu |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | [Alibaba AI Labs] |
| authorships[4].author.id | https://openalex.org/A5021908609 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-2448-2318 |
| authorships[4].author.display_name | Marc Pollefeys |
| authorships[4].countries | CH |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I35440088 |
| authorships[4].affiliations[0].raw_affiliation_string | ETH Zürich |
| authorships[4].institutions[0].id | https://openalex.org/I35440088 |
| authorships[4].institutions[0].ror | https://ror.org/05a28rw58 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I2799323385, https://openalex.org/I35440088 |
| authorships[4].institutions[0].country_code | CH |
| authorships[4].institutions[0].display_name | ETH Zurich |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Marc Pollefeys |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | ETH Zürich |
| authorships[5].author.id | https://openalex.org/A5084953118 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-4506-6973 |
| authorships[5].author.display_name | Ping Tan |
| authorships[5].countries | CA |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I18014758 |
| authorships[5].affiliations[0].raw_affiliation_string | [Simon Fraser University] |
| authorships[5].institutions[0].id | https://openalex.org/I18014758 |
| authorships[5].institutions[0].ror | https://ror.org/0213rcc28 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I18014758 |
| authorships[5].institutions[0].country_code | CA |
| authorships[5].institutions[0].display_name | Simon Fraser University |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Ping Tan |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | [Simon Fraser University] |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2005.03358 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Self-Supervised Human Depth Estimation from Monocular Videos |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10531 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9990000128746033 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Advanced Vision and Imaging |
| related_works | https://openalex.org/W4295532600, https://openalex.org/W2063823869, https://openalex.org/W2047973478, https://openalex.org/W2067569035, https://openalex.org/W2090985514, https://openalex.org/W2113666009, https://openalex.org/W200819717, https://openalex.org/W4386076228, https://openalex.org/W4310825149, https://openalex.org/W2798269247 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2023 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2021 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2005.03358 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2005.03358 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2005.03358 |
| primary_location.id | pmh:oai:arXiv.org:2005.03358 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2005.03358 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2005.03358 |
| publication_date | 2020-05-07 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W2307770531, https://openalex.org/W1901129140, https://openalex.org/W2962754033, https://openalex.org/W1989191365, https://openalex.org/W2732026016, https://openalex.org/W2545173102, https://openalex.org/W2981978060, https://openalex.org/W1625949922, https://openalex.org/W2573098616, https://openalex.org/W2593414960, https://openalex.org/W2949634581, https://openalex.org/W2797515701, https://openalex.org/W2559085405, https://openalex.org/W2963869461, https://openalex.org/W2611932403, https://openalex.org/W2892165078, https://openalex.org/W2995380430, https://openalex.org/W2971467054, https://openalex.org/W2302255633, https://openalex.org/W2943956032, https://openalex.org/W2325034626, https://openalex.org/W2991621301, https://openalex.org/W2554247908, https://openalex.org/W2798505423, https://openalex.org/W2963995996, https://openalex.org/W2300779272, https://openalex.org/W2963474899, https://openalex.org/W2963583471, https://openalex.org/W2963654727, https://openalex.org/W2981514602, https://openalex.org/W2562703451, https://openalex.org/W2963669509, https://openalex.org/W2965523038, https://openalex.org/W2962921964, https://openalex.org/W2975420824, https://openalex.org/W1938204631, https://openalex.org/W2963598138, https://openalex.org/W2483862638, https://openalex.org/W2798637590, https://openalex.org/W2942368658, https://openalex.org/W2612706635, https://openalex.org/W2979283733, https://openalex.org/W2963876278, https://openalex.org/W2964219767, https://openalex.org/W2609883120, https://openalex.org/W2336968928, https://openalex.org/W2133665775, https://openalex.org/W2963907666, https://openalex.org/W2978956737, https://openalex.org/W2194775991, https://openalex.org/W2964194725, https://openalex.org/W2892193095 |
| referenced_works_count | 52 |
| abstract_inverted_index.a | 19, 53, 60, 90 |
| abstract_inverted_index.3D | 75 |
| abstract_inverted_index.To | 82 |
| abstract_inverted_index.at | 94 |
| abstract_inverted_index.be | 24 |
| abstract_inverted_index.by | 51 |
| abstract_inverted_index.in | 128 |
| abstract_inverted_index.is | 49, 57 |
| abstract_inverted_index.of | 42, 78 |
| abstract_inverted_index.on | 2, 26, 109, 126 |
| abstract_inverted_index.to | 69 |
| abstract_inverted_index.we | 87 |
| abstract_inverted_index.The | 46 |
| abstract_inverted_index.and | 38, 63, 73, 98, 122 |
| abstract_inverted_index.can | 23 |
| abstract_inverted_index.its | 64 |
| abstract_inverted_index.our | 117 |
| abstract_inverted_index.the | 40, 43, 70, 74, 79, 100, 111, 129 |
| abstract_inverted_index.SMPL | 92 |
| abstract_inverted_index.This | 16 |
| abstract_inverted_index.body | 102 |
| abstract_inverted_index.data | 35, 127 |
| abstract_inverted_index.each | 95 |
| abstract_inverted_index.much | 124 |
| abstract_inverted_index.that | 22, 116 |
| abstract_inverted_index.this | 84 |
| abstract_inverted_index.with | 11 |
| abstract_inverted_index.body. | 81 |
| abstract_inverted_index.data. | 15 |
| abstract_inverted_index.depth | 6, 14, 72 |
| abstract_inverted_index.first | 88 |
| abstract_inverted_index.frame | 62, 97 |
| abstract_inverted_index.human | 5, 80 |
| abstract_inverted_index.known | 30 |
| abstract_inverted_index.loss, | 55 |
| abstract_inverted_index.makes | 33 |
| abstract_inverted_index.model | 93 |
| abstract_inverted_index.often | 7 |
| abstract_inverted_index.paper | 17 |
| abstract_inverted_index.rough | 91 |
| abstract_inverted_index.shape | 112 |
| abstract_inverted_index.solve | 83 |
| abstract_inverted_index.video | 61, 96 |
| abstract_inverted_index.which | 32, 56, 105 |
| abstract_inverted_index.wild. | 130 |
| abstract_inverted_index.better | 120, 125 |
| abstract_inverted_index.depth, | 31 |
| abstract_inverted_index.enjoys | 119 |
| abstract_inverted_index.frames | 66 |
| abstract_inverted_index.method | 21, 118 |
| abstract_inverted_index.motion | 77, 103 |
| abstract_inverted_index.simple | 37 |
| abstract_inverted_index.truth' | 13 |
| abstract_inverted_index.videos | 28 |
| abstract_inverted_index.warped | 67 |
| abstract_inverted_index.YouTube | 27 |
| abstract_inverted_index.`ground | 12 |
| abstract_inverted_index.between | 59 |
| abstract_inverted_index.compute | 99 |
| abstract_inverted_index.enables | 106 |
| abstract_inverted_index.learned | 44 |
| abstract_inverted_index.methods | 1 |
| abstract_inverted_index.motion, | 86 |
| abstract_inverted_index.require | 8 |
| abstract_inverted_index.trained | 25 |
| abstract_inverted_index.without | 29 |
| abstract_inverted_index.Previous | 0 |
| abstract_inverted_index.achieved | 50 |
| abstract_inverted_index.detailed | 4 |
| abstract_inverted_index.details. | 113 |
| abstract_inverted_index.estimate | 89 |
| abstract_inverted_index.improves | 39 |
| abstract_inverted_index.learning | 48, 108 |
| abstract_inverted_index.network. | 45 |
| abstract_inverted_index.performs | 123 |
| abstract_inverted_index.presents | 18 |
| abstract_inverted_index.training | 10, 34 |
| abstract_inverted_index.according | 68 |
| abstract_inverted_index.estimated | 71 |
| abstract_inverted_index.evaluated | 58 |
| abstract_inverted_index.non-rigid | 76, 85, 101 |
| abstract_inverted_index.collection | 36 |
| abstract_inverted_index.estimating | 3, 110 |
| abstract_inverted_index.minimizing | 52 |
| abstract_inverted_index.supervised | 9 |
| abstract_inverted_index.Experiments | 114 |
| abstract_inverted_index.demonstrate | 115 |
| abstract_inverted_index.neighboring | 65 |
| abstract_inverted_index.accordingly, | 104 |
| abstract_inverted_index.generalization | 41, 121 |
| abstract_inverted_index.self-supervised | 20, 47, 107 |
| abstract_inverted_index.photo-consistency | 54 |
| cited_by_percentile_year | |
| countries_distinct_count | 3 |
| institutions_distinct_count | 6 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/16 |
| sustainable_development_goals[0].score | 0.44999998807907104 |
| sustainable_development_goals[0].display_name | Peace, Justice and strong institutions |
| citation_normalized_percentile |