Self-supervised learning for generalizable particle picking in cryo-EM micrographs Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1016/j.crmeth.2025.101089
We present cryoelectron microscopy masked autoencoder (cryo-EMMAE), a self-supervised method designed to overcome the need for manually annotated cryo-EM data. cryo-EMMAE leverages the representation space of a masked autoencoder to pick particle pixels through clustering of the MAE latent representation. Evaluation across different EMPIAR datasets demonstrates that cryo-EMMAE outperforms state-of-the-art supervised methods in terms of generalization capabilities. Importantly, our method showcases consistent performance, independent of the dataset used for training. Additionally, cryo-EMMAE is data efficient, as we experimentally observe that it converges with as few as five micrographs. Further, 3D reconstruction results indicate that our method has superior performance in reconstructing the volumes in both single-particle datasets and multi-particle micrographs derived from cell extracts. Our results underscore the potential of self-supervised learning in advancing cryo-EM image analysis, offering an alternative for more efficient and cost-effective structural biology research. Code is available at https://github.com/azamanos/Cryo-EMMAE.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.crmeth.2025.101089
- https://www.cell.com/cell-reports-methods/pdf/S2667-2375(25)00125-0.pdf
- OA Status
- gold
- Cited By
- 1
- References
- 76
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4412087773
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4412087773Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.crmeth.2025.101089Digital Object Identifier
- Title
-
Self-supervised learning for generalizable particle picking in cryo-EM micrographsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-07-01Full publication date if available
- Authors
-
Andreas Zamanos, Panagiotis Koromilas, Giorgos Bouritsas, Panagiotis L. Kastritis, Yannis PanagakisList of authors in order
- Landing page
-
https://doi.org/10.1016/j.crmeth.2025.101089Publisher landing page
- PDF URL
-
https://www.cell.com/cell-reports-methods/pdf/S2667-2375(25)00125-0.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.cell.com/cell-reports-methods/pdf/S2667-2375(25)00125-0.pdfDirect OA link when available
- Concepts
-
Artificial intelligence, Electron micrographs, Particle (ecology), Single particle analysis, Computer science, Computer vision, Pattern recognition (psychology), Machine learning, Physics, Optics, Biology, Electron microscope, Ecology, Meteorology, AerosolTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
76Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4412087773 |
|---|---|
| doi | https://doi.org/10.1016/j.crmeth.2025.101089 |
| ids.doi | https://doi.org/10.1016/j.crmeth.2025.101089 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/40628274 |
| ids.openalex | https://openalex.org/W4412087773 |
| fwci | 8.14583322 |
| mesh[0].qualifier_ui | Q000379 |
| mesh[0].descriptor_ui | D020285 |
| mesh[0].is_major_topic | True |
| mesh[0].qualifier_name | methods |
| mesh[0].descriptor_name | Cryoelectron Microscopy |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D000069553 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Supervised Machine Learning |
| mesh[2].qualifier_ui | Q000379 |
| mesh[2].descriptor_ui | D007091 |
| mesh[2].is_major_topic | True |
| mesh[2].qualifier_name | methods |
| mesh[2].descriptor_name | Image Processing, Computer-Assisted |
| mesh[3].qualifier_ui | Q000379 |
| mesh[3].descriptor_ui | D021621 |
| mesh[3].is_major_topic | False |
| mesh[3].qualifier_name | methods |
| mesh[3].descriptor_name | Imaging, Three-Dimensional |
| mesh[4].qualifier_ui | Q000379 |
| mesh[4].descriptor_ui | D020285 |
| mesh[4].is_major_topic | True |
| mesh[4].qualifier_name | methods |
| mesh[4].descriptor_name | Cryoelectron Microscopy |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D000069553 |
| mesh[5].is_major_topic | True |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Supervised Machine Learning |
| mesh[6].qualifier_ui | Q000379 |
| mesh[6].descriptor_ui | D007091 |
| mesh[6].is_major_topic | True |
| mesh[6].qualifier_name | methods |
| mesh[6].descriptor_name | Image Processing, Computer-Assisted |
| mesh[7].qualifier_ui | Q000379 |
| mesh[7].descriptor_ui | D021621 |
| mesh[7].is_major_topic | False |
| mesh[7].qualifier_name | methods |
| mesh[7].descriptor_name | Imaging, Three-Dimensional |
| mesh[8].qualifier_ui | Q000379 |
| mesh[8].descriptor_ui | D020285 |
| mesh[8].is_major_topic | True |
| mesh[8].qualifier_name | methods |
| mesh[8].descriptor_name | Cryoelectron Microscopy |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D000069553 |
| mesh[9].is_major_topic | True |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | Supervised Machine Learning |
| mesh[10].qualifier_ui | Q000379 |
| mesh[10].descriptor_ui | D007091 |
| mesh[10].is_major_topic | True |
| mesh[10].qualifier_name | methods |
| mesh[10].descriptor_name | Image Processing, Computer-Assisted |
| mesh[11].qualifier_ui | Q000379 |
| mesh[11].descriptor_ui | D021621 |
| mesh[11].is_major_topic | False |
| mesh[11].qualifier_name | methods |
| mesh[11].descriptor_name | Imaging, Three-Dimensional |
| type | article |
| title | Self-supervised learning for generalizable particle picking in cryo-EM micrographs |
| awards[0].id | https://openalex.org/G238684906 |
| awards[0].funder_id | https://openalex.org/F4320320879 |
| awards[0].display_name | |
| awards[0].funder_award_id | SFB 1664 |
| awards[0].funder_display_name | Deutsche Forschungsgemeinschaft |
| awards[1].id | https://openalex.org/G1358196216 |
| awards[1].funder_id | https://openalex.org/F4320321114 |
| awards[1].display_name | |
| awards[1].funder_award_id | 03Z22HN23 |
| awards[1].funder_display_name | Bundesministerium für Bildung und Forschung |
| awards[2].id | https://openalex.org/G7355620950 |
| awards[2].funder_id | https://openalex.org/F4320320879 |
| awards[2].display_name | |
| awards[2].funder_award_id | 514901783 |
| awards[2].funder_display_name | Deutsche Forschungsgemeinschaft |
| awards[3].id | https://openalex.org/G7772577051 |
| awards[3].funder_id | https://openalex.org/F4320320879 |
| awards[3].display_name | |
| awards[3].funder_award_id | 391498659 |
| awards[3].funder_display_name | Deutsche Forschungsgemeinschaft |
| awards[4].id | https://openalex.org/G7878342559 |
| awards[4].funder_id | https://openalex.org/F4320327859 |
| awards[4].display_name | |
| awards[4].funder_award_id | 10816 |
| awards[4].funder_display_name | Hellenic Foundation for Research and Innovation |
| awards[5].id | https://openalex.org/G2509988855 |
| awards[5].funder_id | https://openalex.org/F4320334322 |
| awards[5].display_name | |
| awards[5].funder_award_id | 101086665 |
| awards[5].funder_display_name | HORIZON EUROPE Framework Programme |
| awards[6].id | https://openalex.org/G1385630101 |
| awards[6].funder_id | https://openalex.org/F4320320879 |
| awards[6].display_name | |
| awards[6].funder_award_id | C04 |
| awards[6].funder_display_name | Deutsche Forschungsgemeinschaft |
| awards[7].id | https://openalex.org/G7072289004 |
| awards[7].funder_id | https://openalex.org/F4320335322 |
| awards[7].display_name | |
| awards[7].funder_award_id | ZS/2016/04/78115 |
| awards[7].funder_display_name | European Regional Development Fund |
| awards[8].id | https://openalex.org/G5750561846 |
| awards[8].funder_id | https://openalex.org/F4320321114 |
| awards[8].display_name | |
| awards[8].funder_award_id | 03Z22HI2 |
| awards[8].funder_display_name | Bundesministerium für Bildung und Forschung |
| awards[9].id | https://openalex.org/G7769434099 |
| awards[9].funder_id | https://openalex.org/F4320321114 |
| awards[9].display_name | |
| awards[9].funder_award_id | 03COV04 |
| awards[9].funder_display_name | Bundesministerium für Bildung und Forschung |
| awards[10].id | https://openalex.org/G8213085267 |
| awards[10].funder_id | https://openalex.org/F4320320879 |
| awards[10].display_name | |
| awards[10].funder_award_id | RTG 2467 |
| awards[10].funder_display_name | Deutsche Forschungsgemeinschaft |
| biblio.issue | 7 |
| biblio.volume | 5 |
| biblio.last_page | 101089 |
| biblio.first_page | 101089 |
| topics[0].id | https://openalex.org/T10857 |
| topics[0].field.id | https://openalex.org/fields/13 |
| topics[0].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1315 |
| topics[0].subfield.display_name | Structural Biology |
| topics[0].display_name | Advanced Electron Microscopy Techniques and Applications |
| topics[1].id | https://openalex.org/T12466 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9940000176429749 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2204 |
| topics[1].subfield.display_name | Biomedical Engineering |
| topics[1].display_name | Near-Field Optical Microscopy |
| topics[2].id | https://openalex.org/T10923 |
| topics[2].field.id | https://openalex.org/fields/31 |
| topics[2].field.display_name | Physics and Astronomy |
| topics[2].score | 0.9930999875068665 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3107 |
| topics[2].subfield.display_name | Atomic and Molecular Physics, and Optics |
| topics[2].display_name | Force Microscopy Techniques and Applications |
| funders[0].id | https://openalex.org/F4320320300 |
| funders[0].ror | https://ror.org/00k4n6c32 |
| funders[0].display_name | European Commission |
| funders[1].id | https://openalex.org/F4320320879 |
| funders[1].ror | https://ror.org/018mejw64 |
| funders[1].display_name | Deutsche Forschungsgemeinschaft |
| funders[2].id | https://openalex.org/F4320321114 |
| funders[2].ror | https://ror.org/04pz7b180 |
| funders[2].display_name | Bundesministerium für Bildung und Forschung |
| funders[3].id | https://openalex.org/F4320327859 |
| funders[3].ror | |
| funders[3].display_name | Hellenic Foundation for Research and Innovation |
| funders[4].id | https://openalex.org/F4320334322 |
| funders[4].ror | |
| funders[4].display_name | HORIZON EUROPE Framework Programme |
| funders[5].id | https://openalex.org/F4320335322 |
| funders[5].ror | https://ror.org/00k4n6c32 |
| funders[5].display_name | European Regional Development Fund |
| is_xpac | False |
| apc_list.value | 5200 |
| apc_list.currency | USD |
| apc_list.value_usd | 5200 |
| apc_paid.value | 5200 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 5200 |
| concepts[0].id | https://openalex.org/C154945302 |
| concepts[0].level | 1 |
| concepts[0].score | 0.5941417813301086 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[0].display_name | Artificial intelligence |
| concepts[1].id | https://openalex.org/C3018767501 |
| concepts[1].level | 3 |
| concepts[1].score | 0.5175901651382446 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q130416 |
| concepts[1].display_name | Electron micrographs |
| concepts[2].id | https://openalex.org/C2778517922 |
| concepts[2].level | 2 |
| concepts[2].score | 0.49862194061279297 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q7140482 |
| concepts[2].display_name | Particle (ecology) |
| concepts[3].id | https://openalex.org/C65293305 |
| concepts[3].level | 3 |
| concepts[3].score | 0.4291861355304718 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7523967 |
| concepts[3].display_name | Single particle analysis |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.4156076908111572 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C31972630 |
| concepts[5].level | 1 |
| concepts[5].score | 0.3829870820045471 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[5].display_name | Computer vision |
| concepts[6].id | https://openalex.org/C153180895 |
| concepts[6].level | 2 |
| concepts[6].score | 0.3599398136138916 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[6].display_name | Pattern recognition (psychology) |
| concepts[7].id | https://openalex.org/C119857082 |
| concepts[7].level | 1 |
| concepts[7].score | 0.3217502534389496 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[7].display_name | Machine learning |
| concepts[8].id | https://openalex.org/C121332964 |
| concepts[8].level | 0 |
| concepts[8].score | 0.21016791462898254 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[8].display_name | Physics |
| concepts[9].id | https://openalex.org/C120665830 |
| concepts[9].level | 1 |
| concepts[9].score | 0.13351911306381226 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q14620 |
| concepts[9].display_name | Optics |
| concepts[10].id | https://openalex.org/C86803240 |
| concepts[10].level | 0 |
| concepts[10].score | 0.11170625686645508 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[10].display_name | Biology |
| concepts[11].id | https://openalex.org/C93877712 |
| concepts[11].level | 2 |
| concepts[11].score | 0.11029928922653198 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q132560 |
| concepts[11].display_name | Electron microscope |
| concepts[12].id | https://openalex.org/C18903297 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q7150 |
| concepts[12].display_name | Ecology |
| concepts[13].id | https://openalex.org/C153294291 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q25261 |
| concepts[13].display_name | Meteorology |
| concepts[14].id | https://openalex.org/C2779345167 |
| concepts[14].level | 2 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q104541 |
| concepts[14].display_name | Aerosol |
| keywords[0].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[0].score | 0.5941417813301086 |
| keywords[0].display_name | Artificial intelligence |
| keywords[1].id | https://openalex.org/keywords/electron-micrographs |
| keywords[1].score | 0.5175901651382446 |
| keywords[1].display_name | Electron micrographs |
| keywords[2].id | https://openalex.org/keywords/particle |
| keywords[2].score | 0.49862194061279297 |
| keywords[2].display_name | Particle (ecology) |
| keywords[3].id | https://openalex.org/keywords/single-particle-analysis |
| keywords[3].score | 0.4291861355304718 |
| keywords[3].display_name | Single particle analysis |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.4156076908111572 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/computer-vision |
| keywords[5].score | 0.3829870820045471 |
| keywords[5].display_name | Computer vision |
| keywords[6].id | https://openalex.org/keywords/pattern-recognition |
| keywords[6].score | 0.3599398136138916 |
| keywords[6].display_name | Pattern recognition (psychology) |
| keywords[7].id | https://openalex.org/keywords/machine-learning |
| keywords[7].score | 0.3217502534389496 |
| keywords[7].display_name | Machine learning |
| keywords[8].id | https://openalex.org/keywords/physics |
| keywords[8].score | 0.21016791462898254 |
| keywords[8].display_name | Physics |
| keywords[9].id | https://openalex.org/keywords/optics |
| keywords[9].score | 0.13351911306381226 |
| keywords[9].display_name | Optics |
| keywords[10].id | https://openalex.org/keywords/biology |
| keywords[10].score | 0.11170625686645508 |
| keywords[10].display_name | Biology |
| keywords[11].id | https://openalex.org/keywords/electron-microscope |
| keywords[11].score | 0.11029928922653198 |
| keywords[11].display_name | Electron microscope |
| language | en |
| locations[0].id | doi:10.1016/j.crmeth.2025.101089 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210214705 |
| locations[0].source.issn | 2667-2375 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2667-2375 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Cell Reports Methods |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.cell.com/cell-reports-methods/pdf/S2667-2375(25)00125-0.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Cell Reports Methods |
| locations[0].landing_page_url | https://doi.org/10.1016/j.crmeth.2025.101089 |
| locations[1].id | pmid:40628274 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Cell reports methods |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/40628274 |
| locations[2].id | pmh:oai:doaj.org/article:edfa3bd3915e429ba83fe7300cae3017 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Cell Reports: Methods, Vol 5, Iss 7, Pp 101089- (2025) |
| locations[2].landing_page_url | https://doaj.org/article/edfa3bd3915e429ba83fe7300cae3017 |
| locations[3].id | pmh:oai:pubmedcentral.nih.gov:12296464 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S2764455111 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | PubMed Central |
| locations[3].source.host_organization | https://openalex.org/I1299303238 |
| locations[3].source.host_organization_name | National Institutes of Health |
| locations[3].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Cell Rep Methods |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/12296464 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5006545540 |
| authorships[0].author.orcid | https://orcid.org/0009-0005-6587-3413 |
| authorships[0].author.display_name | Andreas Zamanos |
| authorships[0].countries | GR |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I200777214 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, 16122 Athens, Greece; Archimedes Unit, Athena Research Center, 15125 Athens, Greece. Electronic address: [email protected]. |
| authorships[0].institutions[0].id | https://openalex.org/I200777214 |
| authorships[0].institutions[0].ror | https://ror.org/04gnjpq42 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I200777214 |
| authorships[0].institutions[0].country_code | GR |
| authorships[0].institutions[0].display_name | National and Kapodistrian University of Athens |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Andreas Zamanos |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, 16122 Athens, Greece; Archimedes Unit, Athena Research Center, 15125 Athens, Greece. Electronic address: [email protected]. |
| authorships[1].author.id | https://openalex.org/A5051381280 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-4466-463X |
| authorships[1].author.display_name | Panagiotis Koromilas |
| authorships[1].countries | GR |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I200777214 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, 16122 Athens, Greece. |
| authorships[1].institutions[0].id | https://openalex.org/I200777214 |
| authorships[1].institutions[0].ror | https://ror.org/04gnjpq42 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I200777214 |
| authorships[1].institutions[0].country_code | GR |
| authorships[1].institutions[0].display_name | National and Kapodistrian University of Athens |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Panagiotis Koromilas |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, 16122 Athens, Greece. |
| authorships[2].author.id | https://openalex.org/A5048832709 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-8476-4918 |
| authorships[2].author.display_name | Giorgos Bouritsas |
| authorships[2].countries | GR |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I200777214 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, 16122 Athens, Greece; Archimedes Unit, Athena Research Center, 15125 Athens, Greece. |
| authorships[2].institutions[0].id | https://openalex.org/I200777214 |
| authorships[2].institutions[0].ror | https://ror.org/04gnjpq42 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I200777214 |
| authorships[2].institutions[0].country_code | GR |
| authorships[2].institutions[0].display_name | National and Kapodistrian University of Athens |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Giorgos Bouritsas |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, 16122 Athens, Greece; Archimedes Unit, Athena Research Center, 15125 Athens, Greece. |
| authorships[3].author.id | https://openalex.org/A5023101546 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-1463-8422 |
| authorships[3].author.display_name | Panagiotis L. Kastritis |
| authorships[3].countries | DE, GR |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210127711, https://openalex.org/I68956291 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Integrative Structural Biochemistry, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3, 06120 Halle/Saale, Germany; Biozentrum, Martin Luther University Halle-Wittenberg, Weinbergweg 22, 06120 Halle/Saale, Halle, Germany; Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece; Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3a, 06120 Halle/Saale, Germany. |
| authorships[3].institutions[0].id | https://openalex.org/I68956291 |
| authorships[3].institutions[0].ror | https://ror.org/05gqaka33 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I68956291 |
| authorships[3].institutions[0].country_code | DE |
| authorships[3].institutions[0].display_name | Martin Luther University Halle-Wittenberg |
| authorships[3].institutions[1].id | https://openalex.org/I4210127711 |
| authorships[3].institutions[1].ror | https://ror.org/033m02g29 |
| authorships[3].institutions[1].type | nonprofit |
| authorships[3].institutions[1].lineage | https://openalex.org/I4210127711 |
| authorships[3].institutions[1].country_code | GR |
| authorships[3].institutions[1].display_name | National Hellenic Research Foundation |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Panagiotis L Kastritis |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Integrative Structural Biochemistry, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3, 06120 Halle/Saale, Germany; Biozentrum, Martin Luther University Halle-Wittenberg, Weinbergweg 22, 06120 Halle/Saale, Halle, Germany; Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece; Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3a, 06120 Halle/Saale, Germany. |
| authorships[4].author.id | https://openalex.org/A5050734738 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-0153-5210 |
| authorships[4].author.display_name | Yannis Panagakis |
| authorships[4].countries | GR |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I200777214 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, 16122 Athens, Greece; Archimedes Unit, Athena Research Center, 15125 Athens, Greece. |
| authorships[4].institutions[0].id | https://openalex.org/I200777214 |
| authorships[4].institutions[0].ror | https://ror.org/04gnjpq42 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I200777214 |
| authorships[4].institutions[0].country_code | GR |
| authorships[4].institutions[0].display_name | National and Kapodistrian University of Athens |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Yannis Panagakis |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, 16122 Athens, Greece; Archimedes Unit, Athena Research Center, 15125 Athens, Greece. |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.cell.com/cell-reports-methods/pdf/S2667-2375(25)00125-0.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Self-supervised learning for generalizable particle picking in cryo-EM micrographs |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10857 |
| primary_topic.field.id | https://openalex.org/fields/13 |
| primary_topic.field.display_name | Biochemistry, Genetics and Molecular Biology |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1315 |
| primary_topic.subfield.display_name | Structural Biology |
| primary_topic.display_name | Advanced Electron Microscopy Techniques and Applications |
| related_works | https://openalex.org/W597547579, https://openalex.org/W2056149371, https://openalex.org/W1967278355, https://openalex.org/W2038325971, https://openalex.org/W2059869688, https://openalex.org/W2065353766, https://openalex.org/W2033170192, https://openalex.org/W2042082545, https://openalex.org/W2034018547, https://openalex.org/W2952434193 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 4 |
| best_oa_location.id | doi:10.1016/j.crmeth.2025.101089 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210214705 |
| best_oa_location.source.issn | 2667-2375 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2667-2375 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Cell Reports Methods |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Elsevier BV |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.cell.com/cell-reports-methods/pdf/S2667-2375(25)00125-0.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Cell Reports Methods |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.crmeth.2025.101089 |
| primary_location.id | doi:10.1016/j.crmeth.2025.101089 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210214705 |
| primary_location.source.issn | 2667-2375 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2667-2375 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Cell Reports Methods |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.cell.com/cell-reports-methods/pdf/S2667-2375(25)00125-0.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Cell Reports Methods |
| primary_location.landing_page_url | https://doi.org/10.1016/j.crmeth.2025.101089 |
| publication_date | 2025-07-01 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W2047902460, https://openalex.org/W1520649887, https://openalex.org/W2344902158, https://openalex.org/W3009153763, https://openalex.org/W4200575902, https://openalex.org/W4292567336, https://openalex.org/W177317313, https://openalex.org/W2017508876, https://openalex.org/W4210742541, https://openalex.org/W2104234755, https://openalex.org/W1982295411, https://openalex.org/W2006826332, https://openalex.org/W2008490358, https://openalex.org/W2028470175, https://openalex.org/W2587625522, https://openalex.org/W2950003311, https://openalex.org/W2963568497, https://openalex.org/W2911634634, https://openalex.org/W2978920675, https://openalex.org/W3127564879, https://openalex.org/W6869087953, https://openalex.org/W2578975883, https://openalex.org/W2793402357, https://openalex.org/W2977933365, https://openalex.org/W3035894262, https://openalex.org/W3105695732, https://openalex.org/W6865308895, https://openalex.org/W2952729952, https://openalex.org/W4229041984, https://openalex.org/W4392157400, https://openalex.org/W2944907629, https://openalex.org/W3128934987, https://openalex.org/W4381686770, https://openalex.org/W6779929759, https://openalex.org/W2077874772, https://openalex.org/W2114341667, https://openalex.org/W2088152928, https://openalex.org/W2962949934, https://openalex.org/W2106033751, https://openalex.org/W6759274242, https://openalex.org/W3196890347, https://openalex.org/W4282933032, https://openalex.org/W6839656003, https://openalex.org/W3006000566, https://openalex.org/W2550234534, https://openalex.org/W3092921638, https://openalex.org/W2560111401, https://openalex.org/W2138390185, https://openalex.org/W2576780822, https://openalex.org/W2728385286, https://openalex.org/W2910494427, https://openalex.org/W3081268675, https://openalex.org/W2404622021, https://openalex.org/W4307497067, https://openalex.org/W4210941801, https://openalex.org/W1810581179, https://openalex.org/W2517678370, https://openalex.org/W2951953176, https://openalex.org/W3093872090, https://openalex.org/W2900290772, https://openalex.org/W4387164156, https://openalex.org/W6774314701, https://openalex.org/W3159481202, https://openalex.org/W6791742336, https://openalex.org/W4313156423, https://openalex.org/W6784333009, https://openalex.org/W4399512708, https://openalex.org/W2915126261, https://openalex.org/W3101982572, https://openalex.org/W3094502228, https://openalex.org/W3005680577, https://openalex.org/W3134652006, https://openalex.org/W3034645203, https://openalex.org/W4394906022, https://openalex.org/W3103292928, https://openalex.org/W4283072464 |
| referenced_works_count | 76 |
| abstract_inverted_index.a | 7, 26 |
| abstract_inverted_index.3D | 89 |
| abstract_inverted_index.We | 0 |
| abstract_inverted_index.an | 128 |
| abstract_inverted_index.as | 75, 83, 85 |
| abstract_inverted_index.at | 141 |
| abstract_inverted_index.in | 52, 99, 103, 122 |
| abstract_inverted_index.is | 72, 139 |
| abstract_inverted_index.it | 80 |
| abstract_inverted_index.of | 25, 35, 54, 64, 119 |
| abstract_inverted_index.to | 11, 29 |
| abstract_inverted_index.we | 76 |
| abstract_inverted_index.MAE | 37 |
| abstract_inverted_index.Our | 114 |
| abstract_inverted_index.and | 107, 133 |
| abstract_inverted_index.few | 84 |
| abstract_inverted_index.for | 15, 68, 130 |
| abstract_inverted_index.has | 96 |
| abstract_inverted_index.our | 58, 94 |
| abstract_inverted_index.the | 13, 22, 36, 65, 101, 117 |
| abstract_inverted_index.Code | 138 |
| abstract_inverted_index.both | 104 |
| abstract_inverted_index.cell | 112 |
| abstract_inverted_index.data | 73 |
| abstract_inverted_index.five | 86 |
| abstract_inverted_index.from | 111 |
| abstract_inverted_index.more | 131 |
| abstract_inverted_index.need | 14 |
| abstract_inverted_index.pick | 30 |
| abstract_inverted_index.that | 46, 79, 93 |
| abstract_inverted_index.used | 67 |
| abstract_inverted_index.with | 82 |
| abstract_inverted_index.data. | 19 |
| abstract_inverted_index.image | 125 |
| abstract_inverted_index.space | 24 |
| abstract_inverted_index.terms | 53 |
| abstract_inverted_index.EMPIAR | 43 |
| abstract_inverted_index.across | 41 |
| abstract_inverted_index.latent | 38 |
| abstract_inverted_index.masked | 4, 27 |
| abstract_inverted_index.method | 9, 59, 95 |
| abstract_inverted_index.pixels | 32 |
| abstract_inverted_index.biology | 136 |
| abstract_inverted_index.cryo-EM | 18, 124 |
| abstract_inverted_index.dataset | 66 |
| abstract_inverted_index.derived | 110 |
| abstract_inverted_index.methods | 51 |
| abstract_inverted_index.observe | 78 |
| abstract_inverted_index.present | 1 |
| abstract_inverted_index.results | 91, 115 |
| abstract_inverted_index.through | 33 |
| abstract_inverted_index.volumes | 102 |
| abstract_inverted_index.Further, | 88 |
| abstract_inverted_index.datasets | 44, 106 |
| abstract_inverted_index.designed | 10 |
| abstract_inverted_index.indicate | 92 |
| abstract_inverted_index.learning | 121 |
| abstract_inverted_index.manually | 16 |
| abstract_inverted_index.offering | 127 |
| abstract_inverted_index.overcome | 12 |
| abstract_inverted_index.particle | 31 |
| abstract_inverted_index.superior | 97 |
| abstract_inverted_index.advancing | 123 |
| abstract_inverted_index.analysis, | 126 |
| abstract_inverted_index.annotated | 17 |
| abstract_inverted_index.available | 140 |
| abstract_inverted_index.converges | 81 |
| abstract_inverted_index.different | 42 |
| abstract_inverted_index.efficient | 132 |
| abstract_inverted_index.extracts. | 113 |
| abstract_inverted_index.leverages | 21 |
| abstract_inverted_index.potential | 118 |
| abstract_inverted_index.research. | 137 |
| abstract_inverted_index.showcases | 60 |
| abstract_inverted_index.training. | 69 |
| abstract_inverted_index.Evaluation | 40 |
| abstract_inverted_index.clustering | 34 |
| abstract_inverted_index.consistent | 61 |
| abstract_inverted_index.cryo-EMMAE | 20, 47, 71 |
| abstract_inverted_index.efficient, | 74 |
| abstract_inverted_index.microscopy | 3 |
| abstract_inverted_index.structural | 135 |
| abstract_inverted_index.supervised | 50 |
| abstract_inverted_index.underscore | 116 |
| abstract_inverted_index.alternative | 129 |
| abstract_inverted_index.autoencoder | 5, 28 |
| abstract_inverted_index.independent | 63 |
| abstract_inverted_index.micrographs | 109 |
| abstract_inverted_index.outperforms | 48 |
| abstract_inverted_index.performance | 98 |
| abstract_inverted_index.Importantly, | 57 |
| abstract_inverted_index.cryoelectron | 2 |
| abstract_inverted_index.demonstrates | 45 |
| abstract_inverted_index.micrographs. | 87 |
| abstract_inverted_index.performance, | 62 |
| abstract_inverted_index.(cryo-EMMAE), | 6 |
| abstract_inverted_index.Additionally, | 70 |
| abstract_inverted_index.capabilities. | 56 |
| abstract_inverted_index.cost-effective | 134 |
| abstract_inverted_index.experimentally | 77 |
| abstract_inverted_index.generalization | 55 |
| abstract_inverted_index.multi-particle | 108 |
| abstract_inverted_index.reconstructing | 100 |
| abstract_inverted_index.reconstruction | 90 |
| abstract_inverted_index.representation | 23 |
| abstract_inverted_index.representation. | 39 |
| abstract_inverted_index.self-supervised | 8, 120 |
| abstract_inverted_index.single-particle | 105 |
| abstract_inverted_index.state-of-the-art | 49 |
| abstract_inverted_index.https://github.com/azamanos/Cryo-EMMAE. | 142 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile.value | 0.92437968 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |