Self-Supervised Multi-Modality Learning for Multi-Label Skin Lesion Classification Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2310.18583
The clinical diagnosis of skin lesion involves the analysis of dermoscopic and clinical modalities. Dermoscopic images provide a detailed view of the surface structures whereas clinical images offer a complementary macroscopic information. The visual diagnosis of melanoma is also based on seven-point checklist which involves identifying different visual attributes. Recently, supervised learning approaches such as convolutional neural networks (CNNs) have shown great performances using both dermoscopic and clinical modalities (Multi-modality). The seven different visual attributes in the checklist are also used to further improve the the diagnosis. The performances of these approaches, however, are still reliant on the availability of large-scaled labeled data. The acquisition of annotated dataset is an expensive and time-consuming task, more so with annotating multi-attributes. To overcome this limitation, we propose a self-supervised learning (SSL) algorithm for multi-modality skin lesion classification. Our algorithm enables the multi-modality learning by maximizing the similarities between paired dermoscopic and clinical images from different views. In addition, we generate surrogate pseudo-multi-labels that represent seven attributes via clustering analysis. We also propose a label-relation-aware module to refine each pseudo-label embedding and capture the interrelationships between pseudo-multi-labels. We validated the effectiveness of our algorithm using well-benchmarked seven-point skin lesion dataset. Our results show that our algorithm achieved better performances than other state-of-the-art SSL counterparts.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2310.18583
- https://arxiv.org/pdf/2310.18583
- OA Status
- green
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4388092626
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4388092626Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2310.18583Digital Object Identifier
- Title
-
Self-Supervised Multi-Modality Learning for Multi-Label Skin Lesion ClassificationWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-10-28Full publication date if available
- Authors
-
Hao Wang, Euijoon Ahn, Lei Bi, Jin‐Man KimList of authors in order
- Landing page
-
https://arxiv.org/abs/2310.18583Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2310.18583Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2310.18583Direct OA link when available
- Concepts
-
Artificial intelligence, Modality (human–computer interaction), Computer science, Pattern recognition (psychology), Convolutional neural network, Modalities, Machine learning, Skin lesion, Medicine, Pathology, Social science, SociologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4388092626 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2310.18583 |
| ids.doi | https://doi.org/10.48550/arxiv.2310.18583 |
| ids.openalex | https://openalex.org/W4388092626 |
| fwci | |
| type | preprint |
| title | Self-Supervised Multi-Modality Learning for Multi-Label Skin Lesion Classification |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10392 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9961000084877014 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2730 |
| topics[0].subfield.display_name | Oncology |
| topics[0].display_name | Cutaneous Melanoma Detection and Management |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C154945302 |
| concepts[0].level | 1 |
| concepts[0].score | 0.7538719177246094 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[0].display_name | Artificial intelligence |
| concepts[1].id | https://openalex.org/C2780226545 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7240659594535828 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q6888030 |
| concepts[1].display_name | Modality (human–computer interaction) |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.7088453769683838 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C153180895 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5902875661849976 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[3].display_name | Pattern recognition (psychology) |
| concepts[4].id | https://openalex.org/C81363708 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5686731338500977 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[4].display_name | Convolutional neural network |
| concepts[5].id | https://openalex.org/C2779903281 |
| concepts[5].level | 2 |
| concepts[5].score | 0.49460241198539734 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q6888026 |
| concepts[5].display_name | Modalities |
| concepts[6].id | https://openalex.org/C119857082 |
| concepts[6].level | 1 |
| concepts[6].score | 0.4517667591571808 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[6].display_name | Machine learning |
| concepts[7].id | https://openalex.org/C2988168687 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4257073402404785 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q949302 |
| concepts[7].display_name | Skin lesion |
| concepts[8].id | https://openalex.org/C71924100 |
| concepts[8].level | 0 |
| concepts[8].score | 0.1362387239933014 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[8].display_name | Medicine |
| concepts[9].id | https://openalex.org/C142724271 |
| concepts[9].level | 1 |
| concepts[9].score | 0.07107189297676086 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7208 |
| concepts[9].display_name | Pathology |
| concepts[10].id | https://openalex.org/C36289849 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q34749 |
| concepts[10].display_name | Social science |
| concepts[11].id | https://openalex.org/C144024400 |
| concepts[11].level | 0 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q21201 |
| concepts[11].display_name | Sociology |
| keywords[0].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[0].score | 0.7538719177246094 |
| keywords[0].display_name | Artificial intelligence |
| keywords[1].id | https://openalex.org/keywords/modality |
| keywords[1].score | 0.7240659594535828 |
| keywords[1].display_name | Modality (human–computer interaction) |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.7088453769683838 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/pattern-recognition |
| keywords[3].score | 0.5902875661849976 |
| keywords[3].display_name | Pattern recognition (psychology) |
| keywords[4].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[4].score | 0.5686731338500977 |
| keywords[4].display_name | Convolutional neural network |
| keywords[5].id | https://openalex.org/keywords/modalities |
| keywords[5].score | 0.49460241198539734 |
| keywords[5].display_name | Modalities |
| keywords[6].id | https://openalex.org/keywords/machine-learning |
| keywords[6].score | 0.4517667591571808 |
| keywords[6].display_name | Machine learning |
| keywords[7].id | https://openalex.org/keywords/skin-lesion |
| keywords[7].score | 0.4257073402404785 |
| keywords[7].display_name | Skin lesion |
| keywords[8].id | https://openalex.org/keywords/medicine |
| keywords[8].score | 0.1362387239933014 |
| keywords[8].display_name | Medicine |
| keywords[9].id | https://openalex.org/keywords/pathology |
| keywords[9].score | 0.07107189297676086 |
| keywords[9].display_name | Pathology |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2310.18583 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2310.18583 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2310.18583 |
| locations[1].id | doi:10.48550/arxiv.2310.18583 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2310.18583 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5101690875 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-9735-6377 |
| authorships[0].author.display_name | Hao Wang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Wang, Hao |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5091848975 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-7027-067X |
| authorships[1].author.display_name | Euijoon Ahn |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ahn, Euijoon |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5015039086 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Lei Bi |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Bi, Lei |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5100614827 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-0905-9730 |
| authorships[3].author.display_name | Jin‐Man Kim |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Kim, Jinman |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2310.18583 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Self-Supervised Multi-Modality Learning for Multi-Label Skin Lesion Classification |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10392 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9961000084877014 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2730 |
| primary_topic.subfield.display_name | Oncology |
| primary_topic.display_name | Cutaneous Melanoma Detection and Management |
| related_works | https://openalex.org/W73545470, https://openalex.org/W4224266612, https://openalex.org/W2383394264, https://openalex.org/W4320153225, https://openalex.org/W4293261942, https://openalex.org/W3125968744, https://openalex.org/W2167701463, https://openalex.org/W2110287964, https://openalex.org/W4307407935, https://openalex.org/W649759291 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2310.18583 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2310.18583 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2310.18583 |
| primary_location.id | pmh:oai:arXiv.org:2310.18583 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2310.18583 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2310.18583 |
| publication_date | 2023-10-28 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 17, 28, 125, 170 |
| abstract_inverted_index.In | 154 |
| abstract_inverted_index.To | 119 |
| abstract_inverted_index.We | 167, 184 |
| abstract_inverted_index.an | 109 |
| abstract_inverted_index.as | 54 |
| abstract_inverted_index.by | 141 |
| abstract_inverted_index.in | 75 |
| abstract_inverted_index.is | 37, 108 |
| abstract_inverted_index.of | 3, 9, 20, 35, 89, 99, 105, 188 |
| abstract_inverted_index.on | 40, 96 |
| abstract_inverted_index.so | 115 |
| abstract_inverted_index.to | 81, 173 |
| abstract_inverted_index.we | 123, 156 |
| abstract_inverted_index.Our | 135, 197 |
| abstract_inverted_index.SSL | 209 |
| abstract_inverted_index.The | 0, 32, 70, 87, 103 |
| abstract_inverted_index.and | 11, 66, 111, 148, 178 |
| abstract_inverted_index.are | 78, 93 |
| abstract_inverted_index.for | 130 |
| abstract_inverted_index.our | 189, 201 |
| abstract_inverted_index.the | 7, 21, 76, 84, 85, 97, 138, 143, 180, 186 |
| abstract_inverted_index.via | 164 |
| abstract_inverted_index.also | 38, 79, 168 |
| abstract_inverted_index.both | 64 |
| abstract_inverted_index.each | 175 |
| abstract_inverted_index.from | 151 |
| abstract_inverted_index.have | 59 |
| abstract_inverted_index.more | 114 |
| abstract_inverted_index.show | 199 |
| abstract_inverted_index.skin | 4, 132, 194 |
| abstract_inverted_index.such | 53 |
| abstract_inverted_index.than | 206 |
| abstract_inverted_index.that | 160, 200 |
| abstract_inverted_index.this | 121 |
| abstract_inverted_index.used | 80 |
| abstract_inverted_index.view | 19 |
| abstract_inverted_index.with | 116 |
| abstract_inverted_index.(SSL) | 128 |
| abstract_inverted_index.based | 39 |
| abstract_inverted_index.data. | 102 |
| abstract_inverted_index.great | 61 |
| abstract_inverted_index.offer | 27 |
| abstract_inverted_index.other | 207 |
| abstract_inverted_index.seven | 71, 162 |
| abstract_inverted_index.shown | 60 |
| abstract_inverted_index.still | 94 |
| abstract_inverted_index.task, | 113 |
| abstract_inverted_index.these | 90 |
| abstract_inverted_index.using | 63, 191 |
| abstract_inverted_index.which | 43 |
| abstract_inverted_index.(CNNs) | 58 |
| abstract_inverted_index.better | 204 |
| abstract_inverted_index.images | 15, 26, 150 |
| abstract_inverted_index.lesion | 5, 133, 195 |
| abstract_inverted_index.module | 172 |
| abstract_inverted_index.neural | 56 |
| abstract_inverted_index.paired | 146 |
| abstract_inverted_index.refine | 174 |
| abstract_inverted_index.views. | 153 |
| abstract_inverted_index.visual | 33, 47, 73 |
| abstract_inverted_index.between | 145, 182 |
| abstract_inverted_index.capture | 179 |
| abstract_inverted_index.dataset | 107 |
| abstract_inverted_index.enables | 137 |
| abstract_inverted_index.further | 82 |
| abstract_inverted_index.improve | 83 |
| abstract_inverted_index.labeled | 101 |
| abstract_inverted_index.propose | 124, 169 |
| abstract_inverted_index.provide | 16 |
| abstract_inverted_index.reliant | 95 |
| abstract_inverted_index.results | 198 |
| abstract_inverted_index.surface | 22 |
| abstract_inverted_index.whereas | 24 |
| abstract_inverted_index.achieved | 203 |
| abstract_inverted_index.analysis | 8 |
| abstract_inverted_index.clinical | 1, 12, 25, 67, 149 |
| abstract_inverted_index.dataset. | 196 |
| abstract_inverted_index.detailed | 18 |
| abstract_inverted_index.generate | 157 |
| abstract_inverted_index.however, | 92 |
| abstract_inverted_index.involves | 6, 44 |
| abstract_inverted_index.learning | 51, 127, 140 |
| abstract_inverted_index.melanoma | 36 |
| abstract_inverted_index.networks | 57 |
| abstract_inverted_index.overcome | 120 |
| abstract_inverted_index.Recently, | 49 |
| abstract_inverted_index.addition, | 155 |
| abstract_inverted_index.algorithm | 129, 136, 190, 202 |
| abstract_inverted_index.analysis. | 166 |
| abstract_inverted_index.annotated | 106 |
| abstract_inverted_index.checklist | 42, 77 |
| abstract_inverted_index.diagnosis | 2, 34 |
| abstract_inverted_index.different | 46, 72, 152 |
| abstract_inverted_index.embedding | 177 |
| abstract_inverted_index.expensive | 110 |
| abstract_inverted_index.represent | 161 |
| abstract_inverted_index.surrogate | 158 |
| abstract_inverted_index.validated | 185 |
| abstract_inverted_index.annotating | 117 |
| abstract_inverted_index.approaches | 52 |
| abstract_inverted_index.attributes | 74, 163 |
| abstract_inverted_index.clustering | 165 |
| abstract_inverted_index.diagnosis. | 86 |
| abstract_inverted_index.maximizing | 142 |
| abstract_inverted_index.modalities | 68 |
| abstract_inverted_index.structures | 23 |
| abstract_inverted_index.supervised | 50 |
| abstract_inverted_index.Dermoscopic | 14 |
| abstract_inverted_index.acquisition | 104 |
| abstract_inverted_index.approaches, | 91 |
| abstract_inverted_index.attributes. | 48 |
| abstract_inverted_index.dermoscopic | 10, 65, 147 |
| abstract_inverted_index.identifying | 45 |
| abstract_inverted_index.limitation, | 122 |
| abstract_inverted_index.macroscopic | 30 |
| abstract_inverted_index.modalities. | 13 |
| abstract_inverted_index.seven-point | 41, 193 |
| abstract_inverted_index.availability | 98 |
| abstract_inverted_index.information. | 31 |
| abstract_inverted_index.large-scaled | 100 |
| abstract_inverted_index.performances | 62, 88, 205 |
| abstract_inverted_index.pseudo-label | 176 |
| abstract_inverted_index.similarities | 144 |
| abstract_inverted_index.complementary | 29 |
| abstract_inverted_index.convolutional | 55 |
| abstract_inverted_index.counterparts. | 210 |
| abstract_inverted_index.effectiveness | 187 |
| abstract_inverted_index.multi-modality | 131, 139 |
| abstract_inverted_index.time-consuming | 112 |
| abstract_inverted_index.classification. | 134 |
| abstract_inverted_index.self-supervised | 126 |
| abstract_inverted_index.state-of-the-art | 208 |
| abstract_inverted_index.well-benchmarked | 192 |
| abstract_inverted_index.(Multi-modality). | 69 |
| abstract_inverted_index.multi-attributes. | 118 |
| abstract_inverted_index.interrelationships | 181 |
| abstract_inverted_index.pseudo-multi-labels | 159 |
| abstract_inverted_index.label-relation-aware | 171 |
| abstract_inverted_index.pseudo-multi-labels. | 183 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |