Self-Supervised Regional and Temporal Auxiliary Tasks for Facial Action Unit Recognition Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2107.14399
Automatic facial action unit (AU) recognition is a challenging task due to the scarcity of manual annotations. To alleviate this problem, a large amount of efforts has been dedicated to exploiting various methods which leverage numerous unlabeled data. However, many aspects with regard to some unique properties of AUs, such as the regional and relational characteristics, are not sufficiently explored in previous works. Motivated by this, we take the AU properties into consideration and propose two auxiliary AU related tasks to bridge the gap between limited annotations and the model performance in a self-supervised manner via the unlabeled data. Specifically, to enhance the discrimination of regional features with AU relation embedding, we design a task of RoI inpainting to recover the randomly cropped AU patches. Meanwhile, a single image based optical flow estimation task is proposed to leverage the dynamic change of facial muscles and encode the motion information into the global feature representation. Based on these two self-supervised auxiliary tasks, local features, mutual relation and motion cues of AUs are better captured in the backbone network with the proposed regional and temporal based auxiliary task learning (RTATL) framework. Extensive experiments on BP4D and DISFA demonstrate the superiority of our method and new state-of-the-art performances are achieved.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2107.14399
- https://arxiv.org/pdf/2107.14399
- OA Status
- green
- Cited By
- 1
- References
- 39
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3190544429
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3190544429Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2107.14399Digital Object Identifier
- Title
-
Self-Supervised Regional and Temporal Auxiliary Tasks for Facial Action Unit RecognitionWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-07-30Full publication date if available
- Authors
-
Jingwei Yan, Jingjing Wang, Qiang Li, Chunmao Wang, Shiliang PuList of authors in order
- Landing page
-
https://arxiv.org/abs/2107.14399Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2107.14399Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2107.14399Direct OA link when available
- Concepts
-
Computer science, Artificial intelligence, Leverage (statistics), Pattern recognition (psychology), Embedding, Task (project management), Feature learning, ENCODE, Optical flow, Machine learning, Labeled data, Relation (database), Image (mathematics), Data mining, Biochemistry, Gene, Chemistry, Economics, ManagementTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2022: 1Per-year citation counts (last 5 years)
- References (count)
-
39Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3190544429 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2107.14399 |
| ids.doi | https://doi.org/10.48550/arxiv.2107.14399 |
| ids.mag | 3190544429 |
| ids.openalex | https://openalex.org/W3190544429 |
| fwci | |
| type | preprint |
| title | Self-Supervised Regional and Temporal Auxiliary Tasks for Facial Action Unit Recognition |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11448 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9973999857902527 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Face recognition and analysis |
| topics[1].id | https://openalex.org/T10667 |
| topics[1].field.id | https://openalex.org/fields/32 |
| topics[1].field.display_name | Psychology |
| topics[1].score | 0.9970999956130981 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3205 |
| topics[1].subfield.display_name | Experimental and Cognitive Psychology |
| topics[1].display_name | Emotion and Mood Recognition |
| topics[2].id | https://openalex.org/T10860 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9922000169754028 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1711 |
| topics[2].subfield.display_name | Signal Processing |
| topics[2].display_name | Speech and Audio Processing |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7732280492782593 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.6782380938529968 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C153083717 |
| concepts[2].level | 2 |
| concepts[2].score | 0.647996187210083 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q6535263 |
| concepts[2].display_name | Leverage (statistics) |
| concepts[3].id | https://openalex.org/C153180895 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5109421610832214 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[3].display_name | Pattern recognition (psychology) |
| concepts[4].id | https://openalex.org/C41608201 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4873257577419281 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q980509 |
| concepts[4].display_name | Embedding |
| concepts[5].id | https://openalex.org/C2780451532 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4844515323638916 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q759676 |
| concepts[5].display_name | Task (project management) |
| concepts[6].id | https://openalex.org/C59404180 |
| concepts[6].level | 2 |
| concepts[6].score | 0.47659772634506226 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q17013334 |
| concepts[6].display_name | Feature learning |
| concepts[7].id | https://openalex.org/C66746571 |
| concepts[7].level | 3 |
| concepts[7].score | 0.4764668941497803 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1134833 |
| concepts[7].display_name | ENCODE |
| concepts[8].id | https://openalex.org/C155542232 |
| concepts[8].level | 3 |
| concepts[8].score | 0.44903138279914856 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q736111 |
| concepts[8].display_name | Optical flow |
| concepts[9].id | https://openalex.org/C119857082 |
| concepts[9].level | 1 |
| concepts[9].score | 0.4318717420101166 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[9].display_name | Machine learning |
| concepts[10].id | https://openalex.org/C2776145971 |
| concepts[10].level | 2 |
| concepts[10].score | 0.43051815032958984 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q30673951 |
| concepts[10].display_name | Labeled data |
| concepts[11].id | https://openalex.org/C25343380 |
| concepts[11].level | 2 |
| concepts[11].score | 0.41748112440109253 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q277521 |
| concepts[11].display_name | Relation (database) |
| concepts[12].id | https://openalex.org/C115961682 |
| concepts[12].level | 2 |
| concepts[12].score | 0.2783922255039215 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[12].display_name | Image (mathematics) |
| concepts[13].id | https://openalex.org/C124101348 |
| concepts[13].level | 1 |
| concepts[13].score | 0.1714349091053009 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[13].display_name | Data mining |
| concepts[14].id | https://openalex.org/C55493867 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q7094 |
| concepts[14].display_name | Biochemistry |
| concepts[15].id | https://openalex.org/C104317684 |
| concepts[15].level | 2 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[15].display_name | Gene |
| concepts[16].id | https://openalex.org/C185592680 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[16].display_name | Chemistry |
| concepts[17].id | https://openalex.org/C162324750 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[17].display_name | Economics |
| concepts[18].id | https://openalex.org/C187736073 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q2920921 |
| concepts[18].display_name | Management |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7732280492782593 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.6782380938529968 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/leverage |
| keywords[2].score | 0.647996187210083 |
| keywords[2].display_name | Leverage (statistics) |
| keywords[3].id | https://openalex.org/keywords/pattern-recognition |
| keywords[3].score | 0.5109421610832214 |
| keywords[3].display_name | Pattern recognition (psychology) |
| keywords[4].id | https://openalex.org/keywords/embedding |
| keywords[4].score | 0.4873257577419281 |
| keywords[4].display_name | Embedding |
| keywords[5].id | https://openalex.org/keywords/task |
| keywords[5].score | 0.4844515323638916 |
| keywords[5].display_name | Task (project management) |
| keywords[6].id | https://openalex.org/keywords/feature-learning |
| keywords[6].score | 0.47659772634506226 |
| keywords[6].display_name | Feature learning |
| keywords[7].id | https://openalex.org/keywords/encode |
| keywords[7].score | 0.4764668941497803 |
| keywords[7].display_name | ENCODE |
| keywords[8].id | https://openalex.org/keywords/optical-flow |
| keywords[8].score | 0.44903138279914856 |
| keywords[8].display_name | Optical flow |
| keywords[9].id | https://openalex.org/keywords/machine-learning |
| keywords[9].score | 0.4318717420101166 |
| keywords[9].display_name | Machine learning |
| keywords[10].id | https://openalex.org/keywords/labeled-data |
| keywords[10].score | 0.43051815032958984 |
| keywords[10].display_name | Labeled data |
| keywords[11].id | https://openalex.org/keywords/relation |
| keywords[11].score | 0.41748112440109253 |
| keywords[11].display_name | Relation (database) |
| keywords[12].id | https://openalex.org/keywords/image |
| keywords[12].score | 0.2783922255039215 |
| keywords[12].display_name | Image (mathematics) |
| keywords[13].id | https://openalex.org/keywords/data-mining |
| keywords[13].score | 0.1714349091053009 |
| keywords[13].display_name | Data mining |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2107.14399 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2107.14399 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2107.14399 |
| locations[1].id | doi:10.48550/arxiv.2107.14399 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2107.14399 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5101408262 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-9014-2050 |
| authorships[0].author.display_name | Jingwei Yan |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yan, Jingwei |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5100426898 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-3170-8952 |
| authorships[1].author.display_name | Jingjing Wang |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Wang, Jingjing |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5100430031 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-9815-4432 |
| authorships[2].author.display_name | Qiang Li |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Li, Qiang |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5078606194 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Chunmao Wang |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Wang, Chunmao |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5085955762 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-5269-7821 |
| authorships[4].author.display_name | Shiliang Pu |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Pu, Shiliang |
| authorships[4].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2107.14399 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2021-08-16T00:00:00 |
| display_name | Self-Supervised Regional and Temporal Auxiliary Tasks for Facial Action Unit Recognition |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11448 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9973999857902527 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Face recognition and analysis |
| related_works | https://openalex.org/W2468279273, https://openalex.org/W2354198838, https://openalex.org/W1989130879, https://openalex.org/W2103419012, https://openalex.org/W2988126442, https://openalex.org/W1974414866, https://openalex.org/W2057568687, https://openalex.org/W2063982682, https://openalex.org/W2338543196, https://openalex.org/W2799180539 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2022 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2107.14399 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2107.14399 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2107.14399 |
| primary_location.id | pmh:oai:arXiv.org:2107.14399 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2107.14399 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2107.14399 |
| publication_date | 2021-07-30 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W2981952041, https://openalex.org/W1522734439, https://openalex.org/W3163828215, https://openalex.org/W2483843242, https://openalex.org/W2280620570, https://openalex.org/W3173225380, https://openalex.org/W2963403868, https://openalex.org/W2971040546, https://openalex.org/W2321533354, https://openalex.org/W2903991757, https://openalex.org/W2612215259, https://openalex.org/W2948303854, https://openalex.org/W2194775991, https://openalex.org/W2970971581, https://openalex.org/W3101614002, https://openalex.org/W2045472600, https://openalex.org/W2964135029, https://openalex.org/W2964007075, https://openalex.org/W3128652535, https://openalex.org/W2962742544, https://openalex.org/W2148349024, https://openalex.org/W2490036604, https://openalex.org/W2982033433, https://openalex.org/W2099471712, https://openalex.org/W2436394355, https://openalex.org/W2608557257, https://openalex.org/W2737986725, https://openalex.org/W2421475762, https://openalex.org/W1522301498, https://openalex.org/W2964015378, https://openalex.org/W2115252128, https://openalex.org/W2963420272, https://openalex.org/W2018727909, https://openalex.org/W2798484817, https://openalex.org/W2969059826, https://openalex.org/W2913939497, https://openalex.org/W2946856970, https://openalex.org/W1595126664, https://openalex.org/W2981595954 |
| referenced_works_count | 39 |
| abstract_inverted_index.a | 7, 21, 92, 113, 126 |
| abstract_inverted_index.AU | 69, 77, 108, 123 |
| abstract_inverted_index.To | 17 |
| abstract_inverted_index.as | 50 |
| abstract_inverted_index.by | 64 |
| abstract_inverted_index.in | 60, 91, 173 |
| abstract_inverted_index.is | 6, 134 |
| abstract_inverted_index.of | 14, 24, 47, 104, 115, 141, 168, 198 |
| abstract_inverted_index.on | 155, 191 |
| abstract_inverted_index.to | 11, 29, 43, 80, 100, 118, 136 |
| abstract_inverted_index.we | 66, 111 |
| abstract_inverted_index.AUs | 169 |
| abstract_inverted_index.RoI | 116 |
| abstract_inverted_index.and | 53, 73, 87, 144, 165, 181, 193, 201 |
| abstract_inverted_index.are | 56, 170, 205 |
| abstract_inverted_index.due | 10 |
| abstract_inverted_index.gap | 83 |
| abstract_inverted_index.has | 26 |
| abstract_inverted_index.new | 202 |
| abstract_inverted_index.not | 57 |
| abstract_inverted_index.our | 199 |
| abstract_inverted_index.the | 12, 51, 68, 82, 88, 96, 102, 120, 138, 146, 150, 174, 178, 196 |
| abstract_inverted_index.two | 75, 157 |
| abstract_inverted_index.via | 95 |
| abstract_inverted_index.(AU) | 4 |
| abstract_inverted_index.AUs, | 48 |
| abstract_inverted_index.BP4D | 192 |
| abstract_inverted_index.been | 27 |
| abstract_inverted_index.cues | 167 |
| abstract_inverted_index.flow | 131 |
| abstract_inverted_index.into | 71, 149 |
| abstract_inverted_index.many | 39 |
| abstract_inverted_index.some | 44 |
| abstract_inverted_index.such | 49 |
| abstract_inverted_index.take | 67 |
| abstract_inverted_index.task | 9, 114, 133, 185 |
| abstract_inverted_index.this | 19 |
| abstract_inverted_index.unit | 3 |
| abstract_inverted_index.with | 41, 107, 177 |
| abstract_inverted_index.Based | 154 |
| abstract_inverted_index.DISFA | 194 |
| abstract_inverted_index.based | 129, 183 |
| abstract_inverted_index.data. | 37, 98 |
| abstract_inverted_index.image | 128 |
| abstract_inverted_index.large | 22 |
| abstract_inverted_index.local | 161 |
| abstract_inverted_index.model | 89 |
| abstract_inverted_index.tasks | 79 |
| abstract_inverted_index.these | 156 |
| abstract_inverted_index.this, | 65 |
| abstract_inverted_index.which | 33 |
| abstract_inverted_index.action | 2 |
| abstract_inverted_index.amount | 23 |
| abstract_inverted_index.better | 171 |
| abstract_inverted_index.bridge | 81 |
| abstract_inverted_index.change | 140 |
| abstract_inverted_index.design | 112 |
| abstract_inverted_index.encode | 145 |
| abstract_inverted_index.facial | 1, 142 |
| abstract_inverted_index.global | 151 |
| abstract_inverted_index.manner | 94 |
| abstract_inverted_index.manual | 15 |
| abstract_inverted_index.method | 200 |
| abstract_inverted_index.motion | 147, 166 |
| abstract_inverted_index.mutual | 163 |
| abstract_inverted_index.regard | 42 |
| abstract_inverted_index.single | 127 |
| abstract_inverted_index.tasks, | 160 |
| abstract_inverted_index.unique | 45 |
| abstract_inverted_index.works. | 62 |
| abstract_inverted_index.(RTATL) | 187 |
| abstract_inverted_index.aspects | 40 |
| abstract_inverted_index.between | 84 |
| abstract_inverted_index.cropped | 122 |
| abstract_inverted_index.dynamic | 139 |
| abstract_inverted_index.efforts | 25 |
| abstract_inverted_index.enhance | 101 |
| abstract_inverted_index.feature | 152 |
| abstract_inverted_index.limited | 85 |
| abstract_inverted_index.methods | 32 |
| abstract_inverted_index.muscles | 143 |
| abstract_inverted_index.network | 176 |
| abstract_inverted_index.optical | 130 |
| abstract_inverted_index.propose | 74 |
| abstract_inverted_index.recover | 119 |
| abstract_inverted_index.related | 78 |
| abstract_inverted_index.various | 31 |
| abstract_inverted_index.However, | 38 |
| abstract_inverted_index.backbone | 175 |
| abstract_inverted_index.captured | 172 |
| abstract_inverted_index.explored | 59 |
| abstract_inverted_index.features | 106 |
| abstract_inverted_index.learning | 186 |
| abstract_inverted_index.leverage | 34, 137 |
| abstract_inverted_index.numerous | 35 |
| abstract_inverted_index.patches. | 124 |
| abstract_inverted_index.previous | 61 |
| abstract_inverted_index.problem, | 20 |
| abstract_inverted_index.proposed | 135, 179 |
| abstract_inverted_index.randomly | 121 |
| abstract_inverted_index.regional | 52, 105, 180 |
| abstract_inverted_index.relation | 109, 164 |
| abstract_inverted_index.scarcity | 13 |
| abstract_inverted_index.temporal | 182 |
| abstract_inverted_index.Automatic | 0 |
| abstract_inverted_index.Extensive | 189 |
| abstract_inverted_index.Motivated | 63 |
| abstract_inverted_index.achieved. | 206 |
| abstract_inverted_index.alleviate | 18 |
| abstract_inverted_index.auxiliary | 76, 159, 184 |
| abstract_inverted_index.dedicated | 28 |
| abstract_inverted_index.features, | 162 |
| abstract_inverted_index.unlabeled | 36, 97 |
| abstract_inverted_index.Meanwhile, | 125 |
| abstract_inverted_index.embedding, | 110 |
| abstract_inverted_index.estimation | 132 |
| abstract_inverted_index.exploiting | 30 |
| abstract_inverted_index.framework. | 188 |
| abstract_inverted_index.inpainting | 117 |
| abstract_inverted_index.properties | 46, 70 |
| abstract_inverted_index.relational | 54 |
| abstract_inverted_index.annotations | 86 |
| abstract_inverted_index.challenging | 8 |
| abstract_inverted_index.demonstrate | 195 |
| abstract_inverted_index.experiments | 190 |
| abstract_inverted_index.information | 148 |
| abstract_inverted_index.performance | 90 |
| abstract_inverted_index.recognition | 5 |
| abstract_inverted_index.superiority | 197 |
| abstract_inverted_index.annotations. | 16 |
| abstract_inverted_index.performances | 204 |
| abstract_inverted_index.sufficiently | 58 |
| abstract_inverted_index.Specifically, | 99 |
| abstract_inverted_index.consideration | 72 |
| abstract_inverted_index.discrimination | 103 |
| abstract_inverted_index.representation. | 153 |
| abstract_inverted_index.self-supervised | 93, 158 |
| abstract_inverted_index.characteristics, | 55 |
| abstract_inverted_index.state-of-the-art | 203 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/16 |
| sustainable_development_goals[0].score | 0.550000011920929 |
| sustainable_development_goals[0].display_name | Peace, Justice and strong institutions |
| sustainable_development_goals[1].id | https://metadata.un.org/sdg/10 |
| sustainable_development_goals[1].score | 0.44999998807907104 |
| sustainable_development_goals[1].display_name | Reduced inequalities |
| citation_normalized_percentile |