Self-Supervised Representation Learning for UK Power Grid Frequency Disturbance Detection Using TC-TSS Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.3390/en18215611
This study presents a self-supervised learning framework for detecting frequency disturbances in power systems using high-resolution time series data. Employing data from the UK National Grid, we apply the Temporal Contrastive Self-Supervised Learning (TC-TSS) approach to learn task-agnostic embeddings from unlabelled 60-s rolling window segments of frequency measurements. The learned representations are then used to train four traditional classifiers, Logistic Regression (LR), Support Vector Machine (SVM), Multi-Layer Perceptron (MLP), and Random Forest (RF), for binary classification of frequency stability events. The proposed method is evaluated using over 15 million data points spanning six months of system operation data. Results show that classifiers trained on TC-TSS embeddings performed better than those using raw input features, particularly in detecting rare disturbance events. ROC-AUC scores for MLP and SVM models reach as high as 0.98, indicating excellent separability in the latent space. Visualisations using UMAP and t-SNE further demonstrate the clustering quality of TC-TSS features. This study highlights the effectiveness of contrastive representation learning in the energy domain, particularly under conditions of limited labelled data, and proves its suitability for integration into real-time smart grid applications.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/en18215611
- https://www.mdpi.com/1996-1073/18/21/5611/pdf?version=1761380554
- OA Status
- gold
- References
- 31
- OpenAlex ID
- https://openalex.org/W4415647971
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4415647971Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/en18215611Digital Object Identifier
- Title
-
Self-Supervised Representation Learning for UK Power Grid Frequency Disturbance Detection Using TC-TSSWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-10-25Full publication date if available
- Authors
-
Maitreyee Dey, Soumya Prakash RanaList of authors in order
- Landing page
-
https://doi.org/10.3390/en18215611Publisher landing page
- PDF URL
-
https://www.mdpi.com/1996-1073/18/21/5611/pdf?version=1761380554Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/1996-1073/18/21/5611/pdf?version=1761380554Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
31Number of works referenced by this work
Full payload
| id | https://openalex.org/W4415647971 |
|---|---|
| doi | https://doi.org/10.3390/en18215611 |
| ids.doi | https://doi.org/10.3390/en18215611 |
| ids.openalex | https://openalex.org/W4415647971 |
| fwci | |
| type | article |
| title | Self-Supervised Representation Learning for UK Power Grid Frequency Disturbance Detection Using TC-TSS |
| biblio.issue | 21 |
| biblio.volume | 18 |
| biblio.last_page | 5611 |
| biblio.first_page | 5611 |
| is_xpac | False |
| apc_list.value | 2200 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2382 |
| apc_paid.value | 2200 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2382 |
| language | en |
| locations[0].id | doi:10.3390/en18215611 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S198098182 |
| locations[0].source.issn | 1996-1073 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1996-1073 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Energies |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/1996-1073/18/21/5611/pdf?version=1761380554 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Energies |
| locations[0].landing_page_url | https://doi.org/10.3390/en18215611 |
| locations[1].id | pmh:oai:doaj.org/article:747dbd643bdd4eaabbaaa0a101467567 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Energies, Vol 18, Iss 21, p 5611 (2025) |
| locations[1].landing_page_url | https://doaj.org/article/747dbd643bdd4eaabbaaa0a101467567 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5066243328 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-6862-7032 |
| authorships[0].author.display_name | Maitreyee Dey |
| authorships[0].countries | GB |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I126193024 |
| authorships[0].affiliations[0].raw_affiliation_string | GENESIS Research Lab, Cyber Security Research Centre, London Metropolitan University, 166-220 Holloway Road, London N7 8DB, UK |
| authorships[0].institutions[0].id | https://openalex.org/I126193024 |
| authorships[0].institutions[0].ror | https://ror.org/00ae33288 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I126193024 |
| authorships[0].institutions[0].country_code | GB |
| authorships[0].institutions[0].display_name | London Metropolitan University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Maitreyee Dey |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | GENESIS Research Lab, Cyber Security Research Centre, London Metropolitan University, 166-220 Holloway Road, London N7 8DB, UK |
| authorships[1].author.id | https://openalex.org/A5088331544 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-8014-8122 |
| authorships[1].author.display_name | Soumya Prakash Rana |
| authorships[1].countries | GB |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I55060895 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Engineering, University of Greenwich, Medway Campus, Central Avenue, Chatham ME4 4TB, UK |
| authorships[1].institutions[0].id | https://openalex.org/I55060895 |
| authorships[1].institutions[0].ror | https://ror.org/00bmj0a71 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I55060895 |
| authorships[1].institutions[0].country_code | GB |
| authorships[1].institutions[0].display_name | University of Greenwich |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Soumya Prakash Rana |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Engineering, University of Greenwich, Medway Campus, Central Avenue, Chatham ME4 4TB, UK |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/1996-1073/18/21/5611/pdf?version=1761380554 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-29T00:00:00 |
| display_name | Self-Supervised Representation Learning for UK Power Grid Frequency Disturbance Detection Using TC-TSS |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.3390/en18215611 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S198098182 |
| best_oa_location.source.issn | 1996-1073 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1996-1073 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Energies |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/1996-1073/18/21/5611/pdf?version=1761380554 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Energies |
| best_oa_location.landing_page_url | https://doi.org/10.3390/en18215611 |
| primary_location.id | doi:10.3390/en18215611 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S198098182 |
| primary_location.source.issn | 1996-1073 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1996-1073 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Energies |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/1996-1073/18/21/5611/pdf?version=1761380554 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Energies |
| primary_location.landing_page_url | https://doi.org/10.3390/en18215611 |
| publication_date | 2025-10-25 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W2085066397, https://openalex.org/W3087125603, https://openalex.org/W3180134988, https://openalex.org/W2947917444, https://openalex.org/W3198487846, https://openalex.org/W4313039525, https://openalex.org/W4385423342, https://openalex.org/W4311724006, https://openalex.org/W4406080987, https://openalex.org/W3171543093, https://openalex.org/W4404244755, https://openalex.org/W4404643938, https://openalex.org/W4394568299, https://openalex.org/W4411885380, https://openalex.org/W4410985766, https://openalex.org/W2938533916, https://openalex.org/W3207924272, https://openalex.org/W3168984673, https://openalex.org/W3213550270, https://openalex.org/W4411725921, https://openalex.org/W4386212336, https://openalex.org/W4409990139, https://openalex.org/W4389381257, https://openalex.org/W4310211614, https://openalex.org/W4408126702, https://openalex.org/W4410788439, https://openalex.org/W3198047772, https://openalex.org/W4213304546, https://openalex.org/W3205893516, https://openalex.org/W4399926806, https://openalex.org/W4385805454 |
| referenced_works_count | 31 |
| abstract_inverted_index.a | 3 |
| abstract_inverted_index.15 | 87 |
| abstract_inverted_index.UK | 23 |
| abstract_inverted_index.as | 128, 130 |
| abstract_inverted_index.in | 11, 115, 135, 161 |
| abstract_inverted_index.is | 83 |
| abstract_inverted_index.of | 45, 76, 94, 149, 157, 168 |
| abstract_inverted_index.on | 103 |
| abstract_inverted_index.to | 35, 54 |
| abstract_inverted_index.we | 26 |
| abstract_inverted_index.MLP | 123 |
| abstract_inverted_index.SVM | 125 |
| abstract_inverted_index.The | 48, 80 |
| abstract_inverted_index.and | 69, 124, 142, 172 |
| abstract_inverted_index.are | 51 |
| abstract_inverted_index.for | 7, 73, 122, 176 |
| abstract_inverted_index.its | 174 |
| abstract_inverted_index.raw | 111 |
| abstract_inverted_index.six | 92 |
| abstract_inverted_index.the | 22, 28, 136, 146, 155, 162 |
| abstract_inverted_index.60-s | 41 |
| abstract_inverted_index.This | 0, 152 |
| abstract_inverted_index.UMAP | 141 |
| abstract_inverted_index.data | 20, 89 |
| abstract_inverted_index.four | 56 |
| abstract_inverted_index.from | 21, 39 |
| abstract_inverted_index.grid | 181 |
| abstract_inverted_index.high | 129 |
| abstract_inverted_index.into | 178 |
| abstract_inverted_index.over | 86 |
| abstract_inverted_index.rare | 117 |
| abstract_inverted_index.show | 99 |
| abstract_inverted_index.than | 108 |
| abstract_inverted_index.that | 100 |
| abstract_inverted_index.then | 52 |
| abstract_inverted_index.time | 16 |
| abstract_inverted_index.used | 53 |
| abstract_inverted_index.(LR), | 61 |
| abstract_inverted_index.(RF), | 72 |
| abstract_inverted_index.0.98, | 131 |
| abstract_inverted_index.Grid, | 25 |
| abstract_inverted_index.apply | 27 |
| abstract_inverted_index.data, | 171 |
| abstract_inverted_index.data. | 18, 97 |
| abstract_inverted_index.input | 112 |
| abstract_inverted_index.learn | 36 |
| abstract_inverted_index.power | 12 |
| abstract_inverted_index.reach | 127 |
| abstract_inverted_index.smart | 180 |
| abstract_inverted_index.study | 1, 153 |
| abstract_inverted_index.t-SNE | 143 |
| abstract_inverted_index.those | 109 |
| abstract_inverted_index.train | 55 |
| abstract_inverted_index.under | 166 |
| abstract_inverted_index.using | 14, 85, 110, 140 |
| abstract_inverted_index.(MLP), | 68 |
| abstract_inverted_index.(SVM), | 65 |
| abstract_inverted_index.Forest | 71 |
| abstract_inverted_index.Random | 70 |
| abstract_inverted_index.TC-TSS | 104, 150 |
| abstract_inverted_index.Vector | 63 |
| abstract_inverted_index.better | 107 |
| abstract_inverted_index.binary | 74 |
| abstract_inverted_index.energy | 163 |
| abstract_inverted_index.latent | 137 |
| abstract_inverted_index.method | 82 |
| abstract_inverted_index.models | 126 |
| abstract_inverted_index.months | 93 |
| abstract_inverted_index.points | 90 |
| abstract_inverted_index.proves | 173 |
| abstract_inverted_index.scores | 121 |
| abstract_inverted_index.series | 17 |
| abstract_inverted_index.space. | 138 |
| abstract_inverted_index.system | 95 |
| abstract_inverted_index.window | 43 |
| abstract_inverted_index.Machine | 64 |
| abstract_inverted_index.ROC-AUC | 120 |
| abstract_inverted_index.Results | 98 |
| abstract_inverted_index.Support | 62 |
| abstract_inverted_index.domain, | 164 |
| abstract_inverted_index.events. | 79, 119 |
| abstract_inverted_index.further | 144 |
| abstract_inverted_index.learned | 49 |
| abstract_inverted_index.limited | 169 |
| abstract_inverted_index.million | 88 |
| abstract_inverted_index.quality | 148 |
| abstract_inverted_index.rolling | 42 |
| abstract_inverted_index.systems | 13 |
| abstract_inverted_index.trained | 102 |
| abstract_inverted_index.(TC-TSS) | 33 |
| abstract_inverted_index.Learning | 32 |
| abstract_inverted_index.Logistic | 59 |
| abstract_inverted_index.National | 24 |
| abstract_inverted_index.Temporal | 29 |
| abstract_inverted_index.approach | 34 |
| abstract_inverted_index.labelled | 170 |
| abstract_inverted_index.learning | 5, 160 |
| abstract_inverted_index.presents | 2 |
| abstract_inverted_index.proposed | 81 |
| abstract_inverted_index.segments | 44 |
| abstract_inverted_index.spanning | 91 |
| abstract_inverted_index.Employing | 19 |
| abstract_inverted_index.detecting | 8, 116 |
| abstract_inverted_index.evaluated | 84 |
| abstract_inverted_index.excellent | 133 |
| abstract_inverted_index.features, | 113 |
| abstract_inverted_index.features. | 151 |
| abstract_inverted_index.framework | 6 |
| abstract_inverted_index.frequency | 9, 46, 77 |
| abstract_inverted_index.operation | 96 |
| abstract_inverted_index.performed | 106 |
| abstract_inverted_index.real-time | 179 |
| abstract_inverted_index.stability | 78 |
| abstract_inverted_index.Perceptron | 67 |
| abstract_inverted_index.Regression | 60 |
| abstract_inverted_index.clustering | 147 |
| abstract_inverted_index.conditions | 167 |
| abstract_inverted_index.embeddings | 38, 105 |
| abstract_inverted_index.highlights | 154 |
| abstract_inverted_index.indicating | 132 |
| abstract_inverted_index.unlabelled | 40 |
| abstract_inverted_index.Contrastive | 30 |
| abstract_inverted_index.Multi-Layer | 66 |
| abstract_inverted_index.classifiers | 101 |
| abstract_inverted_index.contrastive | 158 |
| abstract_inverted_index.demonstrate | 145 |
| abstract_inverted_index.disturbance | 118 |
| abstract_inverted_index.integration | 177 |
| abstract_inverted_index.suitability | 175 |
| abstract_inverted_index.traditional | 57 |
| abstract_inverted_index.classifiers, | 58 |
| abstract_inverted_index.disturbances | 10 |
| abstract_inverted_index.particularly | 114, 165 |
| abstract_inverted_index.separability | 134 |
| abstract_inverted_index.applications. | 182 |
| abstract_inverted_index.effectiveness | 156 |
| abstract_inverted_index.measurements. | 47 |
| abstract_inverted_index.task-agnostic | 37 |
| abstract_inverted_index.Visualisations | 139 |
| abstract_inverted_index.classification | 75 |
| abstract_inverted_index.representation | 159 |
| abstract_inverted_index.Self-Supervised | 31 |
| abstract_inverted_index.high-resolution | 15 |
| abstract_inverted_index.representations | 50 |
| abstract_inverted_index.self-supervised | 4 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile |