Self-supervised Text-vision Alignment for Automated Brain MRI Abnormality Detection: A Multicenter Study (ALIGN Study) Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1148/ryai.240619
Purpose To develop a self-supervised text-vision framework to detect abnormalities on brain MRI scans by leveraging free-text neuroradiology reports, eliminating the need for expertlabeled training datasets. Materials and Methods This retrospective and prospective multicenter study included 81,936 brain MRI examinations and corresponding radiology reports for adult patients at two UK National Health Service (NHS) hospitals during January 2008-December 2019 for training and internal testing, and 1,369 prospectively collected examinations between March 2022-March 2024 from four separate NHS hospitals for external testing ( clinicaltrials.gov NCT043681). A neuroradiology language model (NeuroBERT) was trained using self-supervised tasks to generate report embeddings. Convolutional neural networks (one per MRI sequence) were trained to map scans to embeddings by minimizing mean squared error loss. The framework then detected abnormalities in new examinations by scoring scans against query sentences using textimage similarity. Model diagnostic performance was assessed using the area under the receiver operating characteristic curve (AUC). Results The framework achieved an AUC of 0.95 (95% CI: 0.94, 0.97) for normal versus abnormal classification and generalized to external sites with examination-level AUCs of 0.90 (95% CI: 0.86, 0.93), 0.87 (95% CI: 0.83, 0.90), 0.86 (95% CI: 0.83, 0.90), and 0.85 (95% CI: 0.81, 0.89). In five zero-shot classification tasks—acute stroke, multiple sclerosis, intracranial hemorrhage, meningioma, and hydrocephalus—the framework achieved a mean AUC of 0.89 (range, 0.77–0.93). For visual-semantic image retrieval, mean precision was 0.84 among the top 15 images across seven pathologies. Conclusion The self-supervised text-vision framework accurately detected brain MRI abnormalities without expert-labeled datasets. © The Author(s) 2025. Published by the Radiological Society of North America under a CC BY 4.0 license
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1148/ryai.240619
- OA Status
- hybrid
- OpenAlex ID
- https://openalex.org/W4416718099
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4416718099Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1148/ryai.240619Digital Object Identifier
- Title
-
Self-supervised Text-vision Alignment for Automated Brain MRI Abnormality Detection: A Multicenter Study (ALIGN Study)Work title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-11-26Full publication date if available
- Authors
-
David Wood, Ayisha Al Busaidi, Ahmed Hammam, Siddharth Agarwal, Yiran Wei, Asif Mazumder, Gareth J. Barker, Peter Sasieni, A. Geetha, Robert A. Dineen, Permesh Singh Dhillon, Kavi Fatania, R. K. Nichols, Hilmar Spohr, Thomas C. Booth, Jeremy Macmullen-Price, Stuart Currie, Pirrone-Brusse Michael, Helen Estall, Maria Filyridou, Tharunniya Vamadevan, Carmen Dragos, Kanika Bhatia, Miguel Bertoni, Kanika Bhatia, Muthu Magesh, Sobha Xavier P, Maria Pantelidou, Gehad AbdallaList of authors in order
- Landing page
-
https://doi.org/10.1148/ryai.240619Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1148/ryai.240619Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4416718099 |
|---|---|
| doi | https://doi.org/10.1148/ryai.240619 |
| ids.doi | https://doi.org/10.1148/ryai.240619 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/41295086 |
| ids.openalex | https://openalex.org/W4416718099 |
| fwci | |
| type | article |
| title | Self-supervised Text-vision Alignment for Automated Brain MRI Abnormality Detection: A Multicenter Study (ALIGN Study) |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | e240619 |
| biblio.first_page | e240619 |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | doi:10.1148/ryai.240619 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210219523 |
| locations[0].source.issn | 2638-6100 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 2638-6100 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Radiology Artificial Intelligence |
| locations[0].source.host_organization | https://openalex.org/P4310315931 |
| locations[0].source.host_organization_name | Radiological Society of North America |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310315931 |
| locations[0].source.host_organization_lineage_names | Radiological Society of North America |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Radiology: Artificial Intelligence |
| locations[0].landing_page_url | https://doi.org/10.1148/ryai.240619 |
| locations[1].id | pmid:41295086 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Radiology. Artificial intelligence |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/41295086 |
| indexed_in | crossref, pubmed |
| authorships[0].author.id | https://openalex.org/A5023089434 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-3058-4871 |
| authorships[0].author.display_name | David Wood |
| authorships[0].countries | GB |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I183935753 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Biomedical Engineering and Imaging Sciences, King’s College London, Rayne Institute, 4th Floor, Lambeth Wing, London SE17 7EH, UK |
| authorships[0].institutions[0].id | https://openalex.org/I183935753 |
| authorships[0].institutions[0].ror | https://ror.org/0220mzb33 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I124357947, https://openalex.org/I183935753 |
| authorships[0].institutions[0].country_code | GB |
| authorships[0].institutions[0].display_name | King's College London |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | David A. Wood |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Biomedical Engineering and Imaging Sciences, King’s College London, Rayne Institute, 4th Floor, Lambeth Wing, London SE17 7EH, UK |
| authorships[1].author.id | https://openalex.org/A5025449701 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-3539-3743 |
| authorships[1].author.display_name | Ayisha Al Busaidi |
| authorships[1].countries | GB |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210111135 |
| authorships[1].affiliations[0].raw_affiliation_string | King's College Hospital NHS Foundation Trust, London, United Kingdom |
| authorships[1].institutions[0].id | https://openalex.org/I4210111135 |
| authorships[1].institutions[0].ror | https://ror.org/01n0k5m85 |
| authorships[1].institutions[0].type | healthcare |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210111135 |
| authorships[1].institutions[0].country_code | GB |
| authorships[1].institutions[0].display_name | King's College Hospital NHS Foundation Trust |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ayisha Al Busaidi |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | King's College Hospital NHS Foundation Trust, London, United Kingdom |
| authorships[2].author.id | https://openalex.org/A5075770233 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-4110-2543 |
| authorships[2].author.display_name | Ahmed Hammam |
| authorships[2].countries | GB |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210111135 |
| authorships[2].affiliations[0].raw_affiliation_string | King's College Hospital NHS Foundation Trust, London, United Kingdom |
| authorships[2].institutions[0].id | https://openalex.org/I4210111135 |
| authorships[2].institutions[0].ror | https://ror.org/01n0k5m85 |
| authorships[2].institutions[0].type | healthcare |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210111135 |
| authorships[2].institutions[0].country_code | GB |
| authorships[2].institutions[0].display_name | King's College Hospital NHS Foundation Trust |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Ahmed Hammam |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | King's College Hospital NHS Foundation Trust, London, United Kingdom |
| authorships[3].author.id | https://openalex.org/A5085782176 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-6477-6284 |
| authorships[3].author.display_name | Siddharth Agarwal |
| authorships[3].countries | GB |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210111135 |
| authorships[3].affiliations[0].raw_affiliation_string | King's College Hospital NHS Foundation Trust, London, United Kingdom |
| authorships[3].institutions[0].id | https://openalex.org/I4210111135 |
| authorships[3].institutions[0].ror | https://ror.org/01n0k5m85 |
| authorships[3].institutions[0].type | healthcare |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210111135 |
| authorships[3].institutions[0].country_code | GB |
| authorships[3].institutions[0].display_name | King's College Hospital NHS Foundation Trust |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Siddharth Agarwal |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | King's College Hospital NHS Foundation Trust, London, United Kingdom |
| authorships[4].author.id | https://openalex.org/A5101875088 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-1791-6050 |
| authorships[4].author.display_name | Yiran Wei |
| authorships[4].countries | GB |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I183935753 |
| authorships[4].affiliations[0].raw_affiliation_string | School of Biomedical Engineering and Imaging Sciences, King’s College London, Rayne Institute, 4th Floor, Lambeth Wing, London SE17 7EH, UK |
| authorships[4].institutions[0].id | https://openalex.org/I183935753 |
| authorships[4].institutions[0].ror | https://ror.org/0220mzb33 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I124357947, https://openalex.org/I183935753 |
| authorships[4].institutions[0].country_code | GB |
| authorships[4].institutions[0].display_name | King's College London |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Yiran Wei |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | School of Biomedical Engineering and Imaging Sciences, King’s College London, Rayne Institute, 4th Floor, Lambeth Wing, London SE17 7EH, UK |
| authorships[5].author.id | https://openalex.org/A5104460063 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-1451-8770 |
| authorships[5].author.display_name | Asif Mazumder |
| authorships[5].countries | GB |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I200166805 |
| authorships[5].affiliations[0].raw_affiliation_string | Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom |
| authorships[5].institutions[0].id | https://openalex.org/I200166805 |
| authorships[5].institutions[0].ror | https://ror.org/00j161312 |
| authorships[5].institutions[0].type | healthcare |
| authorships[5].institutions[0].lineage | https://openalex.org/I200166805 |
| authorships[5].institutions[0].country_code | GB |
| authorships[5].institutions[0].display_name | Guy's and St Thomas' NHS Foundation Trust |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Asif Mazumder |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom |
| authorships[6].author.id | https://openalex.org/A5079179983 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-5214-7421 |
| authorships[6].author.display_name | Gareth J. Barker |
| authorships[6].countries | GB |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I183935753 |
| authorships[6].affiliations[0].raw_affiliation_string | Department of Neuroimaging, Institute of Psychiatry, Psychology, & Neuroscience, King's College London, United Kingdom |
| authorships[6].institutions[0].id | https://openalex.org/I183935753 |
| authorships[6].institutions[0].ror | https://ror.org/0220mzb33 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I124357947, https://openalex.org/I183935753 |
| authorships[6].institutions[0].country_code | GB |
| authorships[6].institutions[0].display_name | King's College London |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Gareth J. Barker |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Department of Neuroimaging, Institute of Psychiatry, Psychology, & Neuroscience, King's College London, United Kingdom |
| authorships[7].author.id | https://openalex.org/A5025868896 |
| authorships[7].author.orcid | https://orcid.org/0000-0003-1509-8744 |
| authorships[7].author.display_name | Peter Sasieni |
| authorships[7].countries | GB |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I183935753 |
| authorships[7].affiliations[0].raw_affiliation_string | School of Biomedical Engineering and Imaging Sciences, King’s College London, Rayne Institute, 4th Floor, Lambeth Wing, London SE17 7EH, UK |
| authorships[7].institutions[0].id | https://openalex.org/I183935753 |
| authorships[7].institutions[0].ror | https://ror.org/0220mzb33 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I124357947, https://openalex.org/I183935753 |
| authorships[7].institutions[0].country_code | GB |
| authorships[7].institutions[0].display_name | King's College London |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Peter Sasieni |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | School of Biomedical Engineering and Imaging Sciences, King’s College London, Rayne Institute, 4th Floor, Lambeth Wing, London SE17 7EH, UK |
| authorships[8].author.id | https://openalex.org/A5050223771 |
| authorships[8].author.orcid | https://orcid.org/0000-0002-3062-1241 |
| authorships[8].author.display_name | A. Geetha |
| authorships[8].countries | GB |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I4210152285 |
| authorships[8].affiliations[0].raw_affiliation_string | Bedfordshire Hospitals NHS Foundation Trust, Bedford Hospital, South Wing, Kempston Road, Bedford, United Kingdom |
| authorships[8].institutions[0].id | https://openalex.org/I4210152285 |
| authorships[8].institutions[0].ror | https://ror.org/045s3rx57 |
| authorships[8].institutions[0].type | healthcare |
| authorships[8].institutions[0].lineage | https://openalex.org/I4210133600, https://openalex.org/I4210152285 |
| authorships[8].institutions[0].country_code | GB |
| authorships[8].institutions[0].display_name | Bedford Hospital |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Anil Geetha |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | Bedfordshire Hospitals NHS Foundation Trust, Bedford Hospital, South Wing, Kempston Road, Bedford, United Kingdom |
| authorships[9].author.id | https://openalex.org/A5032240771 |
| authorships[9].author.orcid | https://orcid.org/0000-0002-9523-2546 |
| authorships[9].author.display_name | Robert A. Dineen |
| authorships[9].countries | GB |
| authorships[9].affiliations[0].institution_ids | https://openalex.org/I142263535 |
| authorships[9].affiliations[0].raw_affiliation_string | Radiological Sciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom |
| authorships[9].institutions[0].id | https://openalex.org/I142263535 |
| authorships[9].institutions[0].ror | https://ror.org/01ee9ar58 |
| authorships[9].institutions[0].type | education |
| authorships[9].institutions[0].lineage | https://openalex.org/I142263535 |
| authorships[9].institutions[0].country_code | GB |
| authorships[9].institutions[0].display_name | University of Nottingham |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | Rob Dineen |
| authorships[9].is_corresponding | False |
| authorships[9].raw_affiliation_strings | Radiological Sciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom |
| authorships[10].author.id | https://openalex.org/A5040524933 |
| authorships[10].author.orcid | https://orcid.org/0000-0003-4353-4515 |
| authorships[10].author.display_name | Permesh Singh Dhillon |
| authorships[10].countries | GB |
| authorships[10].affiliations[0].institution_ids | https://openalex.org/I142263535 |
| authorships[10].affiliations[0].raw_affiliation_string | Radiological Sciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom |
| authorships[10].institutions[0].id | https://openalex.org/I142263535 |
| authorships[10].institutions[0].ror | https://ror.org/01ee9ar58 |
| authorships[10].institutions[0].type | education |
| authorships[10].institutions[0].lineage | https://openalex.org/I142263535 |
| authorships[10].institutions[0].country_code | GB |
| authorships[10].institutions[0].display_name | University of Nottingham |
| authorships[10].author_position | middle |
| authorships[10].raw_author_name | Permesh Dhillon |
| authorships[10].is_corresponding | False |
| authorships[10].raw_affiliation_strings | Radiological Sciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom |
| authorships[11].author.id | https://openalex.org/A5027642013 |
| authorships[11].author.orcid | https://orcid.org/0000-0003-2421-1083 |
| authorships[11].author.display_name | Kavi Fatania |
| authorships[11].countries | GB |
| authorships[11].affiliations[0].institution_ids | https://openalex.org/I1295121038 |
| authorships[11].affiliations[0].raw_affiliation_string | Department of Neuroradiology, Floor B, Clarendon Wing, Leeds General Infirmary, Leeds, United Kingdom |
| authorships[11].institutions[0].id | https://openalex.org/I1295121038 |
| authorships[11].institutions[0].ror | https://ror.org/04hrjej96 |
| authorships[11].institutions[0].type | healthcare |
| authorships[11].institutions[0].lineage | https://openalex.org/I1295121038, https://openalex.org/I2799390153 |
| authorships[11].institutions[0].country_code | GB |
| authorships[11].institutions[0].display_name | Leeds General Infirmary |
| authorships[11].author_position | middle |
| authorships[11].raw_author_name | Kavi Fatania |
| authorships[11].is_corresponding | False |
| authorships[11].raw_affiliation_strings | Department of Neuroradiology, Floor B, Clarendon Wing, Leeds General Infirmary, Leeds, United Kingdom |
| authorships[12].author.id | https://openalex.org/A5009523919 |
| authorships[12].author.orcid | https://orcid.org/0009-0005-5718-9574 |
| authorships[12].author.display_name | R. K. Nichols |
| authorships[12].countries | GB |
| authorships[12].affiliations[0].institution_ids | https://openalex.org/I2800186071, https://openalex.org/I4401726752 |
| authorships[12].affiliations[0].raw_affiliation_string | Yeovil Hospital, Somerset NHS Foundation Trust, Yeovil, United Kingdom |
| authorships[12].institutions[0].id | https://openalex.org/I4401726752 |
| authorships[12].institutions[0].ror | https://ror.org/00abj3t43 |
| authorships[12].institutions[0].type | healthcare |
| authorships[12].institutions[0].lineage | https://openalex.org/I4401726752 |
| authorships[12].institutions[0].country_code | |
| authorships[12].institutions[0].display_name | Somerset NHS Foundation Trust |
| authorships[12].institutions[1].id | https://openalex.org/I2800186071 |
| authorships[12].institutions[1].ror | https://ror.org/00v5nyn36 |
| authorships[12].institutions[1].type | healthcare |
| authorships[12].institutions[1].lineage | https://openalex.org/I2800186071 |
| authorships[12].institutions[1].country_code | GB |
| authorships[12].institutions[1].display_name | Yeovil District Hospital NHS Foundation Trust |
| authorships[12].author_position | middle |
| authorships[12].raw_author_name | Rebecca Nichols |
| authorships[12].is_corresponding | False |
| authorships[12].raw_affiliation_strings | Yeovil Hospital, Somerset NHS Foundation Trust, Yeovil, United Kingdom |
| authorships[13].author.id | https://openalex.org/A5044972647 |
| authorships[13].author.orcid | |
| authorships[13].author.display_name | Hilmar Spohr |
| authorships[13].countries | GB |
| authorships[13].affiliations[0].institution_ids | https://openalex.org/I2799472390 |
| authorships[13].affiliations[0].raw_affiliation_string | Department of Radiology, Norfolk and Norwich University Hospital, Norwich, Norfolk, United Kingdom |
| authorships[13].institutions[0].id | https://openalex.org/I2799472390 |
| authorships[13].institutions[0].ror | https://ror.org/021zm6p18 |
| authorships[13].institutions[0].type | healthcare |
| authorships[13].institutions[0].lineage | https://openalex.org/I2799472390, https://openalex.org/I2800371493 |
| authorships[13].institutions[0].country_code | GB |
| authorships[13].institutions[0].display_name | Norfolk and Norwich University Hospital |
| authorships[13].author_position | middle |
| authorships[13].raw_author_name | Hilmar Spohr |
| authorships[13].is_corresponding | False |
| authorships[13].raw_affiliation_strings | Department of Radiology, Norfolk and Norwich University Hospital, Norwich, Norfolk, United Kingdom |
| authorships[14].author.id | https://openalex.org/A5003607819 |
| authorships[14].author.orcid | https://orcid.org/0000-0003-0984-3998 |
| authorships[14].author.display_name | Thomas C. Booth |
| authorships[14].countries | GB |
| authorships[14].affiliations[0].institution_ids | https://openalex.org/I183935753 |
| authorships[14].affiliations[0].raw_affiliation_string | School of Biomedical Engineering and Imaging Sciences, King’s College London, Rayne Institute, 4th Floor, Lambeth Wing, London SE17 7EH, UK |
| authorships[14].affiliations[1].institution_ids | https://openalex.org/I4210111135 |
| authorships[14].affiliations[1].raw_affiliation_string | King’s College Hospital NHS Foundation Trust, London, United Kingdom |
| authorships[14].institutions[0].id | https://openalex.org/I4210111135 |
| authorships[14].institutions[0].ror | https://ror.org/01n0k5m85 |
| authorships[14].institutions[0].type | healthcare |
| authorships[14].institutions[0].lineage | https://openalex.org/I4210111135 |
| authorships[14].institutions[0].country_code | GB |
| authorships[14].institutions[0].display_name | King's College Hospital NHS Foundation Trust |
| authorships[14].institutions[1].id | https://openalex.org/I183935753 |
| authorships[14].institutions[1].ror | https://ror.org/0220mzb33 |
| authorships[14].institutions[1].type | education |
| authorships[14].institutions[1].lineage | https://openalex.org/I124357947, https://openalex.org/I183935753 |
| authorships[14].institutions[1].country_code | GB |
| authorships[14].institutions[1].display_name | King's College London |
| authorships[14].author_position | last |
| authorships[14].raw_author_name | Thomas C. Booth |
| authorships[14].is_corresponding | False |
| authorships[14].raw_affiliation_strings | King’s College Hospital NHS Foundation Trust, London, United Kingdom, School of Biomedical Engineering and Imaging Sciences, King’s College London, Rayne Institute, 4th Floor, Lambeth Wing, London SE17 7EH, UK |
| authorships[15].author.id | https://openalex.org/A5120521585 |
| authorships[15].author.orcid | |
| authorships[15].author.display_name | Jeremy Macmullen-Price |
| authorships[15].author_position | middle |
| authorships[15].raw_author_name | Jeremy Macmullen-Price |
| authorships[15].is_corresponding | False |
| authorships[16].author.id | https://openalex.org/A5077977840 |
| authorships[16].author.orcid | https://orcid.org/0000-0002-0154-6588 |
| authorships[16].author.display_name | Stuart Currie |
| authorships[16].author_position | middle |
| authorships[16].raw_author_name | Stuart Currie |
| authorships[16].is_corresponding | False |
| authorships[17].author.id | https://openalex.org/A5056852981 |
| authorships[17].author.orcid | |
| authorships[17].author.display_name | Pirrone-Brusse Michael |
| authorships[17].author_position | middle |
| authorships[17].raw_author_name | Philips G. Michael |
| authorships[17].is_corresponding | False |
| authorships[18].author.id | https://openalex.org/A5120431727 |
| authorships[18].author.orcid | |
| authorships[18].author.display_name | Helen Estall |
| authorships[18].author_position | middle |
| authorships[18].raw_author_name | Helen Estall |
| authorships[18].is_corresponding | False |
| authorships[19].author.id | https://openalex.org/A5036374831 |
| authorships[19].author.orcid | |
| authorships[19].author.display_name | Maria Filyridou |
| authorships[19].author_position | middle |
| authorships[19].raw_author_name | Maria Filyridou |
| authorships[19].is_corresponding | False |
| authorships[20].author.id | https://openalex.org/A5070802768 |
| authorships[20].author.orcid | |
| authorships[20].author.display_name | Tharunniya Vamadevan |
| authorships[20].author_position | middle |
| authorships[20].raw_author_name | Tharunniya Vamadevan |
| authorships[20].is_corresponding | False |
| authorships[21].author.id | https://openalex.org/A5016263723 |
| authorships[21].author.orcid | https://orcid.org/0000-0002-5391-0310 |
| authorships[21].author.display_name | Carmen Dragos |
| authorships[21].author_position | middle |
| authorships[21].raw_author_name | Carmen Dragos |
| authorships[21].is_corresponding | False |
| authorships[22].author.id | https://openalex.org/A5064645798 |
| authorships[22].author.orcid | |
| authorships[22].author.display_name | Kanika Bhatia |
| authorships[22].author_position | middle |
| authorships[22].raw_author_name | Kanika Bhatia |
| authorships[22].is_corresponding | False |
| authorships[23].author.id | https://openalex.org/A5089011521 |
| authorships[23].author.orcid | |
| authorships[23].author.display_name | Miguel Bertoni |
| authorships[23].author_position | middle |
| authorships[23].raw_author_name | Miguel Bertoni |
| authorships[23].is_corresponding | False |
| authorships[24].author.id | https://openalex.org/A5064645798 |
| authorships[24].author.orcid | |
| authorships[24].author.display_name | Kanika Bhatia |
| authorships[24].author_position | middle |
| authorships[24].raw_author_name | Kanika Bhatia |
| authorships[24].is_corresponding | False |
| authorships[25].author.id | https://openalex.org/A5120476962 |
| authorships[25].author.orcid | |
| authorships[25].author.display_name | Muthu Magesh |
| authorships[25].author_position | middle |
| authorships[25].raw_author_name | Muthu Magesh |
| authorships[25].is_corresponding | False |
| authorships[26].author.id | https://openalex.org/A5015036413 |
| authorships[26].author.orcid | https://orcid.org/0009-0004-6124-6132 |
| authorships[26].author.display_name | Sobha Xavier P |
| authorships[26].countries | GB |
| authorships[26].affiliations[0].institution_ids | https://openalex.org/I183935753 |
| authorships[26].affiliations[0].raw_affiliation_string | School of Biomedical Engineering and Imaging Sciences, King's College London, Rayne Institute, 4th Floor, Lambeth Wing, London SE17 7EH, UK |
| authorships[26].institutions[0].id | https://openalex.org/I183935753 |
| authorships[26].institutions[0].ror | https://ror.org/0220mzb33 |
| authorships[26].institutions[0].type | education |
| authorships[26].institutions[0].lineage | https://openalex.org/I124357947, https://openalex.org/I183935753 |
| authorships[26].institutions[0].country_code | GB |
| authorships[26].institutions[0].display_name | King's College London |
| authorships[26].author_position | middle |
| authorships[26].raw_author_name | Peter Xavier |
| authorships[26].is_corresponding | False |
| authorships[26].raw_affiliation_strings | School of Biomedical Engineering and Imaging Sciences, King's College London, Rayne Institute, 4th Floor, Lambeth Wing, London SE17 7EH, UK |
| authorships[27].author.id | https://openalex.org/A5120476963 |
| authorships[27].author.orcid | |
| authorships[27].author.display_name | Maria Pantelidou |
| authorships[27].author_position | middle |
| authorships[27].raw_author_name | Maria Pantelidou |
| authorships[27].is_corresponding | False |
| authorships[28].author.id | https://openalex.org/A5041961850 |
| authorships[28].author.orcid | https://orcid.org/0000-0002-4282-6906 |
| authorships[28].author.display_name | Gehad Abdalla |
| authorships[28].author_position | middle |
| authorships[28].raw_author_name | Gehad Abdalla |
| authorships[28].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1148/ryai.240619 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-11-27T00:00:00 |
| display_name | Self-supervised Text-vision Alignment for Automated Brain MRI Abnormality Detection: A Multicenter Study (ALIGN Study) |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-28T21:24:13.780117 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1148/ryai.240619 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210219523 |
| best_oa_location.source.issn | 2638-6100 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 2638-6100 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Radiology Artificial Intelligence |
| best_oa_location.source.host_organization | https://openalex.org/P4310315931 |
| best_oa_location.source.host_organization_name | Radiological Society of North America |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310315931 |
| best_oa_location.source.host_organization_lineage_names | Radiological Society of North America |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Radiology: Artificial Intelligence |
| best_oa_location.landing_page_url | https://doi.org/10.1148/ryai.240619 |
| primary_location.id | doi:10.1148/ryai.240619 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210219523 |
| primary_location.source.issn | 2638-6100 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 2638-6100 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Radiology Artificial Intelligence |
| primary_location.source.host_organization | https://openalex.org/P4310315931 |
| primary_location.source.host_organization_name | Radiological Society of North America |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310315931 |
| primary_location.source.host_organization_lineage_names | Radiological Society of North America |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Radiology: Artificial Intelligence |
| primary_location.landing_page_url | https://doi.org/10.1148/ryai.240619 |
| publication_date | 2025-11-26 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.( | 81 |
| abstract_inverted_index.A | 84 |
| abstract_inverted_index.a | 3, 212, 261 |
| abstract_inverted_index.15 | 230 |
| abstract_inverted_index.BY | 263 |
| abstract_inverted_index.CC | 262 |
| abstract_inverted_index.In | 197 |
| abstract_inverted_index.To | 1 |
| abstract_inverted_index.UK | 49 |
| abstract_inverted_index.an | 154 |
| abstract_inverted_index.at | 47 |
| abstract_inverted_index.by | 14, 112, 126, 253 |
| abstract_inverted_index.in | 123 |
| abstract_inverted_index.of | 156, 175, 215, 257 |
| abstract_inverted_index.on | 10 |
| abstract_inverted_index.to | 7, 94, 107, 110, 169 |
| abstract_inverted_index.© | 248 |
| abstract_inverted_index.4.0 | 264 |
| abstract_inverted_index.AUC | 155, 214 |
| abstract_inverted_index.CI: | 159, 178, 183, 188, 194 |
| abstract_inverted_index.For | 219 |
| abstract_inverted_index.MRI | 12, 38, 103, 243 |
| abstract_inverted_index.NHS | 76 |
| abstract_inverted_index.The | 118, 151, 236, 249 |
| abstract_inverted_index.and | 27, 31, 40, 61, 64, 167, 191, 208 |
| abstract_inverted_index.for | 22, 44, 59, 78, 162 |
| abstract_inverted_index.map | 108 |
| abstract_inverted_index.new | 124 |
| abstract_inverted_index.per | 102 |
| abstract_inverted_index.the | 20, 141, 144, 228, 254 |
| abstract_inverted_index.top | 229 |
| abstract_inverted_index.two | 48 |
| abstract_inverted_index.was | 89, 138, 225 |
| abstract_inverted_index.(95% | 158, 177, 182, 187, 193 |
| abstract_inverted_index.(one | 101 |
| abstract_inverted_index.0.84 | 226 |
| abstract_inverted_index.0.85 | 192 |
| abstract_inverted_index.0.86 | 186 |
| abstract_inverted_index.0.87 | 181 |
| abstract_inverted_index.0.89 | 216 |
| abstract_inverted_index.0.90 | 176 |
| abstract_inverted_index.0.95 | 157 |
| abstract_inverted_index.2019 | 58 |
| abstract_inverted_index.2024 | 72 |
| abstract_inverted_index.AUCs | 174 |
| abstract_inverted_index.This | 29 |
| abstract_inverted_index.area | 142 |
| abstract_inverted_index.five | 198 |
| abstract_inverted_index.four | 74 |
| abstract_inverted_index.from | 73 |
| abstract_inverted_index.mean | 114, 213, 223 |
| abstract_inverted_index.need | 21 |
| abstract_inverted_index.then | 120 |
| abstract_inverted_index.were | 105 |
| abstract_inverted_index.with | 172 |
| abstract_inverted_index.(NHS) | 53 |
| abstract_inverted_index.0.81, | 195 |
| abstract_inverted_index.0.83, | 184, 189 |
| abstract_inverted_index.0.86, | 179 |
| abstract_inverted_index.0.94, | 160 |
| abstract_inverted_index.0.97) | 161 |
| abstract_inverted_index.1,369 | 65 |
| abstract_inverted_index.2025. | 251 |
| abstract_inverted_index.March | 70 |
| abstract_inverted_index.Model | 135 |
| abstract_inverted_index.North | 258 |
| abstract_inverted_index.adult | 45 |
| abstract_inverted_index.among | 227 |
| abstract_inverted_index.brain | 11, 37, 242 |
| abstract_inverted_index.curve | 148 |
| abstract_inverted_index.error | 116 |
| abstract_inverted_index.image | 221 |
| abstract_inverted_index.loss. | 117 |
| abstract_inverted_index.model | 87 |
| abstract_inverted_index.query | 130 |
| abstract_inverted_index.scans | 13, 109, 128 |
| abstract_inverted_index.seven | 233 |
| abstract_inverted_index.sites | 171 |
| abstract_inverted_index.study | 34 |
| abstract_inverted_index.tasks | 93 |
| abstract_inverted_index.under | 143, 260 |
| abstract_inverted_index.using | 91, 132, 140 |
| abstract_inverted_index.(AUC). | 149 |
| abstract_inverted_index.0.89). | 196 |
| abstract_inverted_index.0.90), | 185, 190 |
| abstract_inverted_index.0.93), | 180 |
| abstract_inverted_index.81,936 | 36 |
| abstract_inverted_index.Health | 51 |
| abstract_inverted_index.across | 232 |
| abstract_inverted_index.detect | 8 |
| abstract_inverted_index.during | 55 |
| abstract_inverted_index.images | 231 |
| abstract_inverted_index.neural | 99 |
| abstract_inverted_index.normal | 163 |
| abstract_inverted_index.report | 96 |
| abstract_inverted_index.versus | 164 |
| abstract_inverted_index.(range, | 217 |
| abstract_inverted_index.America | 259 |
| abstract_inverted_index.January | 56 |
| abstract_inverted_index.Methods | 28 |
| abstract_inverted_index.Purpose | 0 |
| abstract_inverted_index.Results | 150 |
| abstract_inverted_index.Service | 52 |
| abstract_inverted_index.Society | 256 |
| abstract_inverted_index.against | 129 |
| abstract_inverted_index.between | 69 |
| abstract_inverted_index.develop | 2 |
| abstract_inverted_index.license | 265 |
| abstract_inverted_index.reports | 43 |
| abstract_inverted_index.scoring | 127 |
| abstract_inverted_index.squared | 115 |
| abstract_inverted_index.stroke, | 202 |
| abstract_inverted_index.testing | 80 |
| abstract_inverted_index.trained | 90, 106 |
| abstract_inverted_index.without | 245 |
| abstract_inverted_index.National | 50 |
| abstract_inverted_index.abnormal | 165 |
| abstract_inverted_index.achieved | 153, 211 |
| abstract_inverted_index.assessed | 139 |
| abstract_inverted_index.detected | 121, 241 |
| abstract_inverted_index.external | 79, 170 |
| abstract_inverted_index.generate | 95 |
| abstract_inverted_index.included | 35 |
| abstract_inverted_index.internal | 62 |
| abstract_inverted_index.language | 86 |
| abstract_inverted_index.multiple | 203 |
| abstract_inverted_index.networks | 100 |
| abstract_inverted_index.patients | 46 |
| abstract_inverted_index.receiver | 145 |
| abstract_inverted_index.reports, | 18 |
| abstract_inverted_index.separate | 75 |
| abstract_inverted_index.testing, | 63 |
| abstract_inverted_index.training | 24, 60 |
| abstract_inverted_index.Author(s) | 250 |
| abstract_inverted_index.Materials | 26 |
| abstract_inverted_index.Published | 252 |
| abstract_inverted_index.collected | 67 |
| abstract_inverted_index.datasets. | 25, 247 |
| abstract_inverted_index.framework | 6, 119, 152, 210, 239 |
| abstract_inverted_index.free-text | 16 |
| abstract_inverted_index.hospitals | 54, 77 |
| abstract_inverted_index.operating | 146 |
| abstract_inverted_index.precision | 224 |
| abstract_inverted_index.radiology | 42 |
| abstract_inverted_index.sentences | 131 |
| abstract_inverted_index.sequence) | 104 |
| abstract_inverted_index.textimage | 133 |
| abstract_inverted_index.zero-shot | 199 |
| abstract_inverted_index.2022-March | 71 |
| abstract_inverted_index.Conclusion | 235 |
| abstract_inverted_index.accurately | 240 |
| abstract_inverted_index.diagnostic | 136 |
| abstract_inverted_index.embeddings | 111 |
| abstract_inverted_index.leveraging | 15 |
| abstract_inverted_index.minimizing | 113 |
| abstract_inverted_index.retrieval, | 222 |
| abstract_inverted_index.sclerosis, | 204 |
| abstract_inverted_index.(NeuroBERT) | 88 |
| abstract_inverted_index.NCT043681). | 83 |
| abstract_inverted_index.eliminating | 19 |
| abstract_inverted_index.embeddings. | 97 |
| abstract_inverted_index.generalized | 168 |
| abstract_inverted_index.hemorrhage, | 206 |
| abstract_inverted_index.meningioma, | 207 |
| abstract_inverted_index.multicenter | 33 |
| abstract_inverted_index.performance | 137 |
| abstract_inverted_index.prospective | 32 |
| abstract_inverted_index.similarity. | 134 |
| abstract_inverted_index.text-vision | 5, 238 |
| abstract_inverted_index.Radiological | 255 |
| abstract_inverted_index.examinations | 39, 68, 125 |
| abstract_inverted_index.intracranial | 205 |
| abstract_inverted_index.pathologies. | 234 |
| abstract_inverted_index.0.77–0.93). | 218 |
| abstract_inverted_index.2008-December | 57 |
| abstract_inverted_index.Convolutional | 98 |
| abstract_inverted_index.abnormalities | 9, 122, 244 |
| abstract_inverted_index.corresponding | 41 |
| abstract_inverted_index.expertlabeled | 23 |
| abstract_inverted_index.prospectively | 66 |
| abstract_inverted_index.retrospective | 30 |
| abstract_inverted_index.tasks—acute | 201 |
| abstract_inverted_index.characteristic | 147 |
| abstract_inverted_index.classification | 166, 200 |
| abstract_inverted_index.expert-labeled | 246 |
| abstract_inverted_index.neuroradiology | 17, 85 |
| abstract_inverted_index.self-supervised | 4, 92, 237 |
| abstract_inverted_index.visual-semantic | 220 |
| abstract_inverted_index.examination-level | 173 |
| abstract_inverted_index.clinicaltrials.gov | 82 |
| abstract_inverted_index.hydrocephalus—the | 209 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 29 |
| citation_normalized_percentile |