Self-Supervised Transformers for fMRI representation Article Swipe
Itzik Malkiel
,
Gony Rosenman
,
Lior Wolf
,
Talma Hendler
·
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2112.05761
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2112.05761
We present TFF, which is a Transformer framework for the analysis of functional Magnetic Resonance Imaging (fMRI) data. TFF employs a two-phase training approach. First, self-supervised training is applied to a collection of fMRI scans, where the model is trained to reconstruct 3D volume data. Second, the pre-trained model is fine-tuned on specific tasks, utilizing ground truth labels. Our results show state-of-the-art performance on a variety of fMRI tasks, including age and gender prediction, as well as schizophrenia recognition. Our code for the training, network architecture, and results is attached as supplementary material.
Related Topics
Concepts
Metadata
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2112.05761
- https://arxiv.org/pdf/2112.05761
- OA Status
- green
- Cited By
- 10
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4292120301
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4292120301Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2112.05761Digital Object Identifier
- Title
-
Self-Supervised Transformers for fMRI representationWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-12-10Full publication date if available
- Authors
-
Itzik Malkiel, Gony Rosenman, Lior Wolf, Talma HendlerList of authors in order
- Landing page
-
https://arxiv.org/abs/2112.05761Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2112.05761Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2112.05761Direct OA link when available
- Concepts
-
Functional magnetic resonance imaging, Computer science, Transformer, Artificial intelligence, Ground truth, Pattern recognition (psychology), Machine learning, Neuroscience, Psychology, Engineering, Electrical engineering, VoltageTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
10Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 3, 2024: 5, 2022: 2Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4292120301 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2112.05761 |
| ids.doi | https://doi.org/10.48550/arxiv.2112.05761 |
| ids.openalex | https://openalex.org/W4292120301 |
| fwci | |
| type | preprint |
| title | Self-Supervised Transformers for fMRI representation |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10241 |
| topics[0].field.id | https://openalex.org/fields/28 |
| topics[0].field.display_name | Neuroscience |
| topics[0].score | 0.9993000030517578 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2805 |
| topics[0].subfield.display_name | Cognitive Neuroscience |
| topics[0].display_name | Functional Brain Connectivity Studies |
| topics[1].id | https://openalex.org/T10378 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9990000128746033 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2741 |
| topics[1].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[1].display_name | Advanced MRI Techniques and Applications |
| topics[2].id | https://openalex.org/T10522 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.998199999332428 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2741 |
| topics[2].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[2].display_name | Medical Imaging Techniques and Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2779226451 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6876559853553772 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q903809 |
| concepts[0].display_name | Functional magnetic resonance imaging |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6594940423965454 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C66322947 |
| concepts[2].level | 3 |
| concepts[2].score | 0.6266481876373291 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11658 |
| concepts[2].display_name | Transformer |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5543159246444702 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C146849305 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5018823146820068 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q370766 |
| concepts[4].display_name | Ground truth |
| concepts[5].id | https://openalex.org/C153180895 |
| concepts[5].level | 2 |
| concepts[5].score | 0.41404831409454346 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[5].display_name | Pattern recognition (psychology) |
| concepts[6].id | https://openalex.org/C119857082 |
| concepts[6].level | 1 |
| concepts[6].score | 0.37570783495903015 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[6].display_name | Machine learning |
| concepts[7].id | https://openalex.org/C169760540 |
| concepts[7].level | 1 |
| concepts[7].score | 0.15968894958496094 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q207011 |
| concepts[7].display_name | Neuroscience |
| concepts[8].id | https://openalex.org/C15744967 |
| concepts[8].level | 0 |
| concepts[8].score | 0.15945842862129211 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[8].display_name | Psychology |
| concepts[9].id | https://openalex.org/C127413603 |
| concepts[9].level | 0 |
| concepts[9].score | 0.11138507723808289 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[9].display_name | Engineering |
| concepts[10].id | https://openalex.org/C119599485 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q43035 |
| concepts[10].display_name | Electrical engineering |
| concepts[11].id | https://openalex.org/C165801399 |
| concepts[11].level | 2 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q25428 |
| concepts[11].display_name | Voltage |
| keywords[0].id | https://openalex.org/keywords/functional-magnetic-resonance-imaging |
| keywords[0].score | 0.6876559853553772 |
| keywords[0].display_name | Functional magnetic resonance imaging |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6594940423965454 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/transformer |
| keywords[2].score | 0.6266481876373291 |
| keywords[2].display_name | Transformer |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.5543159246444702 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/ground-truth |
| keywords[4].score | 0.5018823146820068 |
| keywords[4].display_name | Ground truth |
| keywords[5].id | https://openalex.org/keywords/pattern-recognition |
| keywords[5].score | 0.41404831409454346 |
| keywords[5].display_name | Pattern recognition (psychology) |
| keywords[6].id | https://openalex.org/keywords/machine-learning |
| keywords[6].score | 0.37570783495903015 |
| keywords[6].display_name | Machine learning |
| keywords[7].id | https://openalex.org/keywords/neuroscience |
| keywords[7].score | 0.15968894958496094 |
| keywords[7].display_name | Neuroscience |
| keywords[8].id | https://openalex.org/keywords/psychology |
| keywords[8].score | 0.15945842862129211 |
| keywords[8].display_name | Psychology |
| keywords[9].id | https://openalex.org/keywords/engineering |
| keywords[9].score | 0.11138507723808289 |
| keywords[9].display_name | Engineering |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2112.05761 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2112.05761 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2112.05761 |
| locations[1].id | doi:10.48550/arxiv.2112.05761 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2112.05761 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5067773841 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-4151-9119 |
| authorships[0].author.display_name | Itzik Malkiel |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Malkiel, Itzik |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5038264782 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Gony Rosenman |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Rosenman, Gony |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5078102229 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-5578-8892 |
| authorships[2].author.display_name | Lior Wolf |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Wolf, Lior |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5063798638 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-4182-4335 |
| authorships[3].author.display_name | Talma Hendler |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Hendler, Talma |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2112.05761 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Self-Supervised Transformers for fMRI representation |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10241 |
| primary_topic.field.id | https://openalex.org/fields/28 |
| primary_topic.field.display_name | Neuroscience |
| primary_topic.score | 0.9993000030517578 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2805 |
| primary_topic.subfield.display_name | Cognitive Neuroscience |
| primary_topic.display_name | Functional Brain Connectivity Studies |
| related_works | https://openalex.org/W4295532600, https://openalex.org/W2063823869, https://openalex.org/W2047973478, https://openalex.org/W2067569035, https://openalex.org/W2090985514, https://openalex.org/W2113666009, https://openalex.org/W2220635983, https://openalex.org/W2145649715, https://openalex.org/W3195209712, https://openalex.org/W4389624431 |
| cited_by_count | 10 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 3 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 5 |
| counts_by_year[2].year | 2022 |
| counts_by_year[2].cited_by_count | 2 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2112.05761 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2112.05761 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2112.05761 |
| primary_location.id | pmh:oai:arXiv.org:2112.05761 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2112.05761 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2112.05761 |
| publication_date | 2021-12-10 |
| publication_year | 2021 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 5, 20, 30, 64 |
| abstract_inverted_index.3D | 42 |
| abstract_inverted_index.We | 0 |
| abstract_inverted_index.as | 74, 76, 90 |
| abstract_inverted_index.is | 4, 27, 38, 49, 88 |
| abstract_inverted_index.of | 11, 32, 66 |
| abstract_inverted_index.on | 51, 63 |
| abstract_inverted_index.to | 29, 40 |
| abstract_inverted_index.Our | 58, 79 |
| abstract_inverted_index.TFF | 18 |
| abstract_inverted_index.age | 70 |
| abstract_inverted_index.and | 71, 86 |
| abstract_inverted_index.for | 8, 81 |
| abstract_inverted_index.the | 9, 36, 46, 82 |
| abstract_inverted_index.TFF, | 2 |
| abstract_inverted_index.code | 80 |
| abstract_inverted_index.fMRI | 33, 67 |
| abstract_inverted_index.show | 60 |
| abstract_inverted_index.well | 75 |
| abstract_inverted_index.data. | 17, 44 |
| abstract_inverted_index.model | 37, 48 |
| abstract_inverted_index.truth | 56 |
| abstract_inverted_index.where | 35 |
| abstract_inverted_index.which | 3 |
| abstract_inverted_index.(fMRI) | 16 |
| abstract_inverted_index.First, | 24 |
| abstract_inverted_index.gender | 72 |
| abstract_inverted_index.ground | 55 |
| abstract_inverted_index.scans, | 34 |
| abstract_inverted_index.tasks, | 53, 68 |
| abstract_inverted_index.volume | 43 |
| abstract_inverted_index.Imaging | 15 |
| abstract_inverted_index.Second, | 45 |
| abstract_inverted_index.applied | 28 |
| abstract_inverted_index.employs | 19 |
| abstract_inverted_index.labels. | 57 |
| abstract_inverted_index.network | 84 |
| abstract_inverted_index.present | 1 |
| abstract_inverted_index.results | 59, 87 |
| abstract_inverted_index.trained | 39 |
| abstract_inverted_index.variety | 65 |
| abstract_inverted_index.Magnetic | 13 |
| abstract_inverted_index.analysis | 10 |
| abstract_inverted_index.attached | 89 |
| abstract_inverted_index.specific | 52 |
| abstract_inverted_index.training | 22, 26 |
| abstract_inverted_index.Resonance | 14 |
| abstract_inverted_index.approach. | 23 |
| abstract_inverted_index.framework | 7 |
| abstract_inverted_index.including | 69 |
| abstract_inverted_index.material. | 92 |
| abstract_inverted_index.training, | 83 |
| abstract_inverted_index.two-phase | 21 |
| abstract_inverted_index.utilizing | 54 |
| abstract_inverted_index.collection | 31 |
| abstract_inverted_index.fine-tuned | 50 |
| abstract_inverted_index.functional | 12 |
| abstract_inverted_index.Transformer | 6 |
| abstract_inverted_index.performance | 62 |
| abstract_inverted_index.pre-trained | 47 |
| abstract_inverted_index.prediction, | 73 |
| abstract_inverted_index.reconstruct | 41 |
| abstract_inverted_index.recognition. | 78 |
| abstract_inverted_index.architecture, | 85 |
| abstract_inverted_index.schizophrenia | 77 |
| abstract_inverted_index.supplementary | 91 |
| abstract_inverted_index.self-supervised | 25 |
| abstract_inverted_index.state-of-the-art | 61 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/5 |
| sustainable_development_goals[0].score | 0.6700000166893005 |
| sustainable_development_goals[0].display_name | Gender equality |
| citation_normalized_percentile |