Semantic Arithmetic Coding Using Synonymous Mappings Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.3390/e27040429
Recent semantic communication methods explore effective ways to expand the communication paradigm and improve the performance of communication systems. Nonetheless, a common problem with these methods is that the essence of semantics is not explicitly pointed out and directly utilized. A new epistemology suggests that synonymity, which is revealed as the fundamental feature of semantics, guides the establishment of semantic information theory from a novel viewpoint. Building on this theoretical basis, this paper proposes a semantic arithmetic coding (SAC) method for semantic lossless compression using intuitive synonymity. By constructing reasonable synonymous mappings and performing arithmetic coding procedures over synonymous sets, SAC can achieve higher compression efficiency for meaning-contained source sequences at the semantic level and approximate the semantic entropy limits. Experimental results on edge texture map compression show a significant improvement in coding efficiency using SAC without semantic losses compared to traditional arithmetic coding, demonstrating its effectiveness.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/e27040429
- https://www.mdpi.com/1099-4300/27/4/429/pdf?version=1744776277
- OA Status
- gold
- Cited By
- 3
- References
- 36
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4409481073
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4409481073Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/e27040429Digital Object Identifier
- Title
-
Semantic Arithmetic Coding Using Synonymous MappingsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-04-15Full publication date if available
- Authors
-
Zijian Liang, Kai Niu, Jin Xu, Ping ZhangList of authors in order
- Landing page
-
https://doi.org/10.3390/e27040429Publisher landing page
- PDF URL
-
https://www.mdpi.com/1099-4300/27/4/429/pdf?version=1744776277Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/1099-4300/27/4/429/pdf?version=1744776277Direct OA link when available
- Concepts
-
Arithmetic coding, Lossless compression, Semantic compression, Computer science, Semantic similarity, Theoretical computer science, Coding (social sciences), Context-adaptive binary arithmetic coding, Natural language processing, Arithmetic, Data compression, Artificial intelligence, Mathematics, Algorithm, Semantic computing, Semantic technology, Statistics, Semantic WebTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
3Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 3Per-year citation counts (last 5 years)
- References (count)
-
36Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4409481073 |
|---|---|
| doi | https://doi.org/10.3390/e27040429 |
| ids.doi | https://doi.org/10.3390/e27040429 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/40282664 |
| ids.openalex | https://openalex.org/W4409481073 |
| fwci | 14.32022193 |
| type | article |
| title | Semantic Arithmetic Coding Using Synonymous Mappings |
| awards[0].id | https://openalex.org/G2612860068 |
| awards[0].funder_id | https://openalex.org/F4320321001 |
| awards[0].display_name | |
| awards[0].funder_award_id | No. 62293481 |
| awards[0].funder_display_name | National Natural Science Foundation of China |
| awards[1].id | https://openalex.org/G7296680388 |
| awards[1].funder_id | https://openalex.org/F4320321001 |
| awards[1].display_name | |
| awards[1].funder_award_id | No. 62471054 |
| awards[1].funder_display_name | National Natural Science Foundation of China |
| biblio.issue | 4 |
| biblio.volume | 27 |
| biblio.last_page | 429 |
| biblio.first_page | 429 |
| topics[0].id | https://openalex.org/T10627 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9684000015258789 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Advanced Image and Video Retrieval Techniques |
| topics[1].id | https://openalex.org/T11269 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9684000015258789 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Algorithms and Data Compression |
| topics[2].id | https://openalex.org/T10824 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9412000179290771 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Image Retrieval and Classification Techniques |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| is_xpac | False |
| apc_list.value | 2000 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2165 |
| apc_paid.value | 2000 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2165 |
| concepts[0].id | https://openalex.org/C153338461 |
| concepts[0].level | 4 |
| concepts[0].score | 0.7685401439666748 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q2651 |
| concepts[0].display_name | Arithmetic coding |
| concepts[1].id | https://openalex.org/C81081738 |
| concepts[1].level | 3 |
| concepts[1].score | 0.6904418468475342 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q55542 |
| concepts[1].display_name | Lossless compression |
| concepts[2].id | https://openalex.org/C202708506 |
| concepts[2].level | 5 |
| concepts[2].score | 0.6815272569656372 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q7449050 |
| concepts[2].display_name | Semantic compression |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.5770334005355835 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C130318100 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5479635000228882 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2268914 |
| concepts[4].display_name | Semantic similarity |
| concepts[5].id | https://openalex.org/C80444323 |
| concepts[5].level | 1 |
| concepts[5].score | 0.534825325012207 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[5].display_name | Theoretical computer science |
| concepts[6].id | https://openalex.org/C179518139 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5308849215507507 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q5140297 |
| concepts[6].display_name | Coding (social sciences) |
| concepts[7].id | https://openalex.org/C175732694 |
| concepts[7].level | 3 |
| concepts[7].score | 0.47334054112434387 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1128713 |
| concepts[7].display_name | Context-adaptive binary arithmetic coding |
| concepts[8].id | https://openalex.org/C204321447 |
| concepts[8].level | 1 |
| concepts[8].score | 0.4645618498325348 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[8].display_name | Natural language processing |
| concepts[9].id | https://openalex.org/C94375191 |
| concepts[9].level | 1 |
| concepts[9].score | 0.4253816604614258 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11205 |
| concepts[9].display_name | Arithmetic |
| concepts[10].id | https://openalex.org/C78548338 |
| concepts[10].level | 2 |
| concepts[10].score | 0.3765830397605896 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2493 |
| concepts[10].display_name | Data compression |
| concepts[11].id | https://openalex.org/C154945302 |
| concepts[11].level | 1 |
| concepts[11].score | 0.366686075925827 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[11].display_name | Artificial intelligence |
| concepts[12].id | https://openalex.org/C33923547 |
| concepts[12].level | 0 |
| concepts[12].score | 0.35722649097442627 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[12].display_name | Mathematics |
| concepts[13].id | https://openalex.org/C11413529 |
| concepts[13].level | 1 |
| concepts[13].score | 0.34773457050323486 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[13].display_name | Algorithm |
| concepts[14].id | https://openalex.org/C511149849 |
| concepts[14].level | 3 |
| concepts[14].score | 0.31212300062179565 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q7449051 |
| concepts[14].display_name | Semantic computing |
| concepts[15].id | https://openalex.org/C6881194 |
| concepts[15].level | 4 |
| concepts[15].score | 0.11570009589195251 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q7449091 |
| concepts[15].display_name | Semantic technology |
| concepts[16].id | https://openalex.org/C105795698 |
| concepts[16].level | 1 |
| concepts[16].score | 0.11197981238365173 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[16].display_name | Statistics |
| concepts[17].id | https://openalex.org/C2129575 |
| concepts[17].level | 2 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q54837 |
| concepts[17].display_name | Semantic Web |
| keywords[0].id | https://openalex.org/keywords/arithmetic-coding |
| keywords[0].score | 0.7685401439666748 |
| keywords[0].display_name | Arithmetic coding |
| keywords[1].id | https://openalex.org/keywords/lossless-compression |
| keywords[1].score | 0.6904418468475342 |
| keywords[1].display_name | Lossless compression |
| keywords[2].id | https://openalex.org/keywords/semantic-compression |
| keywords[2].score | 0.6815272569656372 |
| keywords[2].display_name | Semantic compression |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.5770334005355835 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/semantic-similarity |
| keywords[4].score | 0.5479635000228882 |
| keywords[4].display_name | Semantic similarity |
| keywords[5].id | https://openalex.org/keywords/theoretical-computer-science |
| keywords[5].score | 0.534825325012207 |
| keywords[5].display_name | Theoretical computer science |
| keywords[6].id | https://openalex.org/keywords/coding |
| keywords[6].score | 0.5308849215507507 |
| keywords[6].display_name | Coding (social sciences) |
| keywords[7].id | https://openalex.org/keywords/context-adaptive-binary-arithmetic-coding |
| keywords[7].score | 0.47334054112434387 |
| keywords[7].display_name | Context-adaptive binary arithmetic coding |
| keywords[8].id | https://openalex.org/keywords/natural-language-processing |
| keywords[8].score | 0.4645618498325348 |
| keywords[8].display_name | Natural language processing |
| keywords[9].id | https://openalex.org/keywords/arithmetic |
| keywords[9].score | 0.4253816604614258 |
| keywords[9].display_name | Arithmetic |
| keywords[10].id | https://openalex.org/keywords/data-compression |
| keywords[10].score | 0.3765830397605896 |
| keywords[10].display_name | Data compression |
| keywords[11].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[11].score | 0.366686075925827 |
| keywords[11].display_name | Artificial intelligence |
| keywords[12].id | https://openalex.org/keywords/mathematics |
| keywords[12].score | 0.35722649097442627 |
| keywords[12].display_name | Mathematics |
| keywords[13].id | https://openalex.org/keywords/algorithm |
| keywords[13].score | 0.34773457050323486 |
| keywords[13].display_name | Algorithm |
| keywords[14].id | https://openalex.org/keywords/semantic-computing |
| keywords[14].score | 0.31212300062179565 |
| keywords[14].display_name | Semantic computing |
| keywords[15].id | https://openalex.org/keywords/semantic-technology |
| keywords[15].score | 0.11570009589195251 |
| keywords[15].display_name | Semantic technology |
| keywords[16].id | https://openalex.org/keywords/statistics |
| keywords[16].score | 0.11197981238365173 |
| keywords[16].display_name | Statistics |
| language | en |
| locations[0].id | doi:10.3390/e27040429 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S195231649 |
| locations[0].source.issn | 1099-4300 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1099-4300 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Entropy |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/1099-4300/27/4/429/pdf?version=1744776277 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Entropy |
| locations[0].landing_page_url | https://doi.org/10.3390/e27040429 |
| locations[1].id | pmid:40282664 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Entropy (Basel, Switzerland) |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/40282664 |
| locations[2].id | pmh:oai:doaj.org/article:7123f66cc3064a93b3a309a7cd684ace |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Entropy, Vol 27, Iss 4, p 429 (2025) |
| locations[2].landing_page_url | https://doaj.org/article/7123f66cc3064a93b3a309a7cd684ace |
| locations[3].id | pmh:oai:pubmedcentral.nih.gov:12025560 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S2764455111 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | PubMed Central |
| locations[3].source.host_organization | https://openalex.org/I1299303238 |
| locations[3].source.host_organization_name | National Institutes of Health |
| locations[3].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Entropy (Basel) |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/12025560 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5006905484 |
| authorships[0].author.orcid | https://orcid.org/0009-0003-8919-4592 |
| authorships[0].author.display_name | Zijian Liang |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I139759216 |
| authorships[0].affiliations[0].raw_affiliation_string | Key Laboratory of Universal Wireless Communications, Ministry of Education, Beijing University of Posts and Telecommunications, Beijing 100876, China |
| authorships[0].institutions[0].id | https://openalex.org/I139759216 |
| authorships[0].institutions[0].ror | https://ror.org/04w9fbh59 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I139759216 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Beijing University of Posts and Telecommunications |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zijian Liang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Key Laboratory of Universal Wireless Communications, Ministry of Education, Beijing University of Posts and Telecommunications, Beijing 100876, China |
| authorships[1].author.id | https://openalex.org/A5008455605 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-8076-1867 |
| authorships[1].author.display_name | Kai Niu |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210136793 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Broadband Communication, Pengcheng Laboratory, Shenzhen 518055, China |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I139759216 |
| authorships[1].affiliations[1].raw_affiliation_string | Key Laboratory of Universal Wireless Communications, Ministry of Education, Beijing University of Posts and Telecommunications, Beijing 100876, China |
| authorships[1].institutions[0].id | https://openalex.org/I139759216 |
| authorships[1].institutions[0].ror | https://ror.org/04w9fbh59 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I139759216 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Beijing University of Posts and Telecommunications |
| authorships[1].institutions[1].id | https://openalex.org/I4210136793 |
| authorships[1].institutions[1].ror | https://ror.org/03qdqbt06 |
| authorships[1].institutions[1].type | facility |
| authorships[1].institutions[1].lineage | https://openalex.org/I4210136793 |
| authorships[1].institutions[1].country_code | CN |
| authorships[1].institutions[1].display_name | Peng Cheng Laboratory |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Kai Niu |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Broadband Communication, Pengcheng Laboratory, Shenzhen 518055, China, Key Laboratory of Universal Wireless Communications, Ministry of Education, Beijing University of Posts and Telecommunications, Beijing 100876, China |
| authorships[2].author.id | https://openalex.org/A5058490125 |
| authorships[2].author.orcid | https://orcid.org/0009-0003-5235-3289 |
| authorships[2].author.display_name | Jin Xu |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I139759216 |
| authorships[2].affiliations[0].raw_affiliation_string | Key Laboratory of Universal Wireless Communications, Ministry of Education, Beijing University of Posts and Telecommunications, Beijing 100876, China |
| authorships[2].institutions[0].id | https://openalex.org/I139759216 |
| authorships[2].institutions[0].ror | https://ror.org/04w9fbh59 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I139759216 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Beijing University of Posts and Telecommunications |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Jin Xu |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Key Laboratory of Universal Wireless Communications, Ministry of Education, Beijing University of Posts and Telecommunications, Beijing 100876, China |
| authorships[3].author.id | https://openalex.org/A5100405787 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-0269-104X |
| authorships[3].author.display_name | Ping Zhang |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I139759216 |
| authorships[3].affiliations[0].raw_affiliation_string | State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China |
| authorships[3].institutions[0].id | https://openalex.org/I139759216 |
| authorships[3].institutions[0].ror | https://ror.org/04w9fbh59 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I139759216 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Beijing University of Posts and Telecommunications |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Ping Zhang |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/1099-4300/27/4/429/pdf?version=1744776277 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Semantic Arithmetic Coding Using Synonymous Mappings |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10627 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9684000015258789 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Advanced Image and Video Retrieval Techniques |
| related_works | https://openalex.org/W3134365128, https://openalex.org/W1965623300, https://openalex.org/W2541135911, https://openalex.org/W2250607250, https://openalex.org/W2359259132, https://openalex.org/W2103835134, https://openalex.org/W2362519509, https://openalex.org/W2365969513, https://openalex.org/W858433989, https://openalex.org/W2184597936 |
| cited_by_count | 3 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 3 |
| locations_count | 4 |
| best_oa_location.id | doi:10.3390/e27040429 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S195231649 |
| best_oa_location.source.issn | 1099-4300 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1099-4300 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Entropy |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/1099-4300/27/4/429/pdf?version=1744776277 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Entropy |
| best_oa_location.landing_page_url | https://doi.org/10.3390/e27040429 |
| primary_location.id | doi:10.3390/e27040429 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S195231649 |
| primary_location.source.issn | 1099-4300 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1099-4300 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Entropy |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/1099-4300/27/4/429/pdf?version=1744776277 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Entropy |
| primary_location.landing_page_url | https://doi.org/10.3390/e27040429 |
| publication_date | 2025-04-15 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W1995875735, https://openalex.org/W2963174256, https://openalex.org/W3036851434, https://openalex.org/W3166791908, https://openalex.org/W2946889564, https://openalex.org/W4226042246, https://openalex.org/W4312051474, https://openalex.org/W4381735920, https://openalex.org/W4387831864, https://openalex.org/W4312051582, https://openalex.org/W4226115138, https://openalex.org/W4402895026, https://openalex.org/W3206899736, https://openalex.org/W4253671238, https://openalex.org/W2042563853, https://openalex.org/W2133249991, https://openalex.org/W2040121225, https://openalex.org/W2065725407, https://openalex.org/W2139377411, https://openalex.org/W4292972664, https://openalex.org/W4399110640, https://openalex.org/W4407782594, https://openalex.org/W2586726222, https://openalex.org/W4312050893, https://openalex.org/W4205683915, https://openalex.org/W4383503581, https://openalex.org/W4313455370, https://openalex.org/W6861348556, https://openalex.org/W2125317383, https://openalex.org/W1850645706, https://openalex.org/W4248260714, https://openalex.org/W2101787379, https://openalex.org/W4321793403, https://openalex.org/W2129652681, https://openalex.org/W2034323860, https://openalex.org/W2194775991 |
| referenced_works_count | 36 |
| abstract_inverted_index.A | 40 |
| abstract_inverted_index.a | 20, 63, 74, 128 |
| abstract_inverted_index.By | 87 |
| abstract_inverted_index.as | 49 |
| abstract_inverted_index.at | 110 |
| abstract_inverted_index.in | 131 |
| abstract_inverted_index.is | 26, 32, 47 |
| abstract_inverted_index.of | 16, 30, 53, 58 |
| abstract_inverted_index.on | 67, 122 |
| abstract_inverted_index.to | 7, 140 |
| abstract_inverted_index.SAC | 100, 135 |
| abstract_inverted_index.and | 12, 37, 92, 114 |
| abstract_inverted_index.can | 101 |
| abstract_inverted_index.for | 80, 106 |
| abstract_inverted_index.its | 145 |
| abstract_inverted_index.map | 125 |
| abstract_inverted_index.new | 41 |
| abstract_inverted_index.not | 33 |
| abstract_inverted_index.out | 36 |
| abstract_inverted_index.the | 9, 14, 28, 50, 56, 111, 116 |
| abstract_inverted_index.edge | 123 |
| abstract_inverted_index.from | 62 |
| abstract_inverted_index.over | 97 |
| abstract_inverted_index.show | 127 |
| abstract_inverted_index.that | 27, 44 |
| abstract_inverted_index.this | 68, 71 |
| abstract_inverted_index.ways | 6 |
| abstract_inverted_index.with | 23 |
| abstract_inverted_index.(SAC) | 78 |
| abstract_inverted_index.level | 113 |
| abstract_inverted_index.novel | 64 |
| abstract_inverted_index.paper | 72 |
| abstract_inverted_index.sets, | 99 |
| abstract_inverted_index.these | 24 |
| abstract_inverted_index.using | 84, 134 |
| abstract_inverted_index.which | 46 |
| abstract_inverted_index.Recent | 0 |
| abstract_inverted_index.basis, | 70 |
| abstract_inverted_index.coding | 77, 95, 132 |
| abstract_inverted_index.common | 21 |
| abstract_inverted_index.expand | 8 |
| abstract_inverted_index.guides | 55 |
| abstract_inverted_index.higher | 103 |
| abstract_inverted_index.losses | 138 |
| abstract_inverted_index.method | 79 |
| abstract_inverted_index.source | 108 |
| abstract_inverted_index.theory | 61 |
| abstract_inverted_index.achieve | 102 |
| abstract_inverted_index.coding, | 143 |
| abstract_inverted_index.entropy | 118 |
| abstract_inverted_index.essence | 29 |
| abstract_inverted_index.explore | 4 |
| abstract_inverted_index.feature | 52 |
| abstract_inverted_index.improve | 13 |
| abstract_inverted_index.limits. | 119 |
| abstract_inverted_index.methods | 3, 25 |
| abstract_inverted_index.pointed | 35 |
| abstract_inverted_index.problem | 22 |
| abstract_inverted_index.results | 121 |
| abstract_inverted_index.texture | 124 |
| abstract_inverted_index.without | 136 |
| abstract_inverted_index.Building | 66 |
| abstract_inverted_index.compared | 139 |
| abstract_inverted_index.directly | 38 |
| abstract_inverted_index.lossless | 82 |
| abstract_inverted_index.mappings | 91 |
| abstract_inverted_index.paradigm | 11 |
| abstract_inverted_index.proposes | 73 |
| abstract_inverted_index.revealed | 48 |
| abstract_inverted_index.semantic | 1, 59, 75, 81, 112, 117, 137 |
| abstract_inverted_index.suggests | 43 |
| abstract_inverted_index.systems. | 18 |
| abstract_inverted_index.effective | 5 |
| abstract_inverted_index.intuitive | 85 |
| abstract_inverted_index.semantics | 31 |
| abstract_inverted_index.sequences | 109 |
| abstract_inverted_index.utilized. | 39 |
| abstract_inverted_index.arithmetic | 76, 94, 142 |
| abstract_inverted_index.efficiency | 105, 133 |
| abstract_inverted_index.explicitly | 34 |
| abstract_inverted_index.performing | 93 |
| abstract_inverted_index.procedures | 96 |
| abstract_inverted_index.reasonable | 89 |
| abstract_inverted_index.semantics, | 54 |
| abstract_inverted_index.synonymous | 90, 98 |
| abstract_inverted_index.viewpoint. | 65 |
| abstract_inverted_index.approximate | 115 |
| abstract_inverted_index.compression | 83, 104, 126 |
| abstract_inverted_index.fundamental | 51 |
| abstract_inverted_index.improvement | 130 |
| abstract_inverted_index.information | 60 |
| abstract_inverted_index.performance | 15 |
| abstract_inverted_index.significant | 129 |
| abstract_inverted_index.synonymity, | 45 |
| abstract_inverted_index.synonymity. | 86 |
| abstract_inverted_index.theoretical | 69 |
| abstract_inverted_index.traditional | 141 |
| abstract_inverted_index.Experimental | 120 |
| abstract_inverted_index.Nonetheless, | 19 |
| abstract_inverted_index.constructing | 88 |
| abstract_inverted_index.epistemology | 42 |
| abstract_inverted_index.communication | 2, 10, 17 |
| abstract_inverted_index.demonstrating | 144 |
| abstract_inverted_index.establishment | 57 |
| abstract_inverted_index.effectiveness. | 146 |
| abstract_inverted_index.meaning-contained | 107 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 96 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/4 |
| sustainable_development_goals[0].score | 0.47999998927116394 |
| sustainable_development_goals[0].display_name | Quality Education |
| citation_normalized_percentile.value | 0.96175996 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |