Semantic Certainty Assessment in Vector Retrieval Systems: A Novel Framework for Embedding Quality Evaluation Article Swipe
Vector retrieval systems exhibit significant performance variance across queries due to heterogeneous embedding quality. We propose a lightweight framework for predicting retrieval performance at the query level by combining quantization robustness and neighborhood density metrics. Our approach is motivated by the observation that high-quality embeddings occupy geometrically stable regions in the embedding space and exhibit consistent neighborhood structures. We evaluate our method on 4 standard retrieval datasets, showing consistent improvements of 9.4$\pm$1.2\% in Recall@10 over competitive baselines. The framework requires minimal computational overhead (less than 5\% of retrieval time) and enables adaptive retrieval strategies. Our analysis reveals systematic patterns in embedding quality across different query types, providing insights for targeted training data augmentation.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2507.05933
- https://arxiv.org/pdf/2507.05933
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4416061687
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4416061687Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2507.05933Digital Object Identifier
- Title
-
Semantic Certainty Assessment in Vector Retrieval Systems: A Novel Framework for Embedding Quality EvaluationWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-07-08Full publication date if available
- Authors
-
Yongkun DuList of authors in order
- Landing page
-
https://arxiv.org/abs/2507.05933Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2507.05933Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2507.05933Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4416061687 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2507.05933 |
| ids.doi | https://doi.org/10.48550/arxiv.2507.05933 |
| ids.openalex | https://openalex.org/W4416061687 |
| fwci | |
| type | preprint |
| title | Semantic Certainty Assessment in Vector Retrieval Systems: A Novel Framework for Embedding Quality Evaluation |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2507.05933 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2507.05933 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2507.05933 |
| locations[1].id | doi:10.48550/arxiv.2507.05933 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2507.05933 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5102915298 |
| authorships[0].author.orcid | https://orcid.org/0009-0000-9859-721X |
| authorships[0].author.display_name | Yongkun Du |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Du, Y. |
| authorships[0].is_corresponding | True |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2507.05933 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Semantic Certainty Assessment in Vector Retrieval Systems: A Novel Framework for Embedding Quality Evaluation |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-28T10:25:12.090339 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2507.05933 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2507.05933 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2507.05933 |
| primary_location.id | pmh:oai:arXiv.org:2507.05933 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2507.05933 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2507.05933 |
| publication_date | 2025-07-08 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.4 | 63 |
| abstract_inverted_index.a | 16 |
| abstract_inverted_index.We | 14, 58 |
| abstract_inverted_index.at | 23 |
| abstract_inverted_index.by | 27, 39 |
| abstract_inverted_index.in | 49, 72, 99 |
| abstract_inverted_index.is | 37 |
| abstract_inverted_index.of | 70, 86 |
| abstract_inverted_index.on | 62 |
| abstract_inverted_index.to | 10 |
| abstract_inverted_index.5\% | 85 |
| abstract_inverted_index.Our | 35, 94 |
| abstract_inverted_index.The | 77 |
| abstract_inverted_index.and | 31, 53, 89 |
| abstract_inverted_index.due | 9 |
| abstract_inverted_index.for | 19, 108 |
| abstract_inverted_index.our | 60 |
| abstract_inverted_index.the | 24, 40, 50 |
| abstract_inverted_index.data | 111 |
| abstract_inverted_index.over | 74 |
| abstract_inverted_index.than | 84 |
| abstract_inverted_index.that | 42 |
| abstract_inverted_index.(less | 83 |
| abstract_inverted_index.level | 26 |
| abstract_inverted_index.query | 25, 104 |
| abstract_inverted_index.space | 52 |
| abstract_inverted_index.time) | 88 |
| abstract_inverted_index.Vector | 0 |
| abstract_inverted_index.across | 7, 102 |
| abstract_inverted_index.method | 61 |
| abstract_inverted_index.occupy | 45 |
| abstract_inverted_index.stable | 47 |
| abstract_inverted_index.types, | 105 |
| abstract_inverted_index.density | 33 |
| abstract_inverted_index.enables | 90 |
| abstract_inverted_index.exhibit | 3, 54 |
| abstract_inverted_index.minimal | 80 |
| abstract_inverted_index.propose | 15 |
| abstract_inverted_index.quality | 101 |
| abstract_inverted_index.queries | 8 |
| abstract_inverted_index.regions | 48 |
| abstract_inverted_index.reveals | 96 |
| abstract_inverted_index.showing | 67 |
| abstract_inverted_index.systems | 2 |
| abstract_inverted_index.adaptive | 91 |
| abstract_inverted_index.analysis | 95 |
| abstract_inverted_index.approach | 36 |
| abstract_inverted_index.evaluate | 59 |
| abstract_inverted_index.insights | 107 |
| abstract_inverted_index.metrics. | 34 |
| abstract_inverted_index.overhead | 82 |
| abstract_inverted_index.patterns | 98 |
| abstract_inverted_index.quality. | 13 |
| abstract_inverted_index.requires | 79 |
| abstract_inverted_index.standard | 64 |
| abstract_inverted_index.targeted | 109 |
| abstract_inverted_index.training | 110 |
| abstract_inverted_index.variance | 6 |
| abstract_inverted_index.Recall@10 | 73 |
| abstract_inverted_index.combining | 28 |
| abstract_inverted_index.datasets, | 66 |
| abstract_inverted_index.different | 103 |
| abstract_inverted_index.embedding | 12, 51, 100 |
| abstract_inverted_index.framework | 18, 78 |
| abstract_inverted_index.motivated | 38 |
| abstract_inverted_index.providing | 106 |
| abstract_inverted_index.retrieval | 1, 21, 65, 87, 92 |
| abstract_inverted_index.baselines. | 76 |
| abstract_inverted_index.consistent | 55, 68 |
| abstract_inverted_index.embeddings | 44 |
| abstract_inverted_index.predicting | 20 |
| abstract_inverted_index.robustness | 30 |
| abstract_inverted_index.systematic | 97 |
| abstract_inverted_index.competitive | 75 |
| abstract_inverted_index.lightweight | 17 |
| abstract_inverted_index.observation | 41 |
| abstract_inverted_index.performance | 5, 22 |
| abstract_inverted_index.significant | 4 |
| abstract_inverted_index.strategies. | 93 |
| abstract_inverted_index.structures. | 57 |
| abstract_inverted_index.high-quality | 43 |
| abstract_inverted_index.improvements | 69 |
| abstract_inverted_index.neighborhood | 32, 56 |
| abstract_inverted_index.quantization | 29 |
| abstract_inverted_index.9.4$\pm$1.2\% | 71 |
| abstract_inverted_index.augmentation. | 112 |
| abstract_inverted_index.computational | 81 |
| abstract_inverted_index.geometrically | 46 |
| abstract_inverted_index.heterogeneous | 11 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5102915298 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 1 |
| citation_normalized_percentile |