Semantic Graph-enhanced Visual Network for Zero-shot Learning Article Swipe
YOU?
·
· 2020
· Open Access
·
Zero-shot learning uses semantic attributes to connect the search space of unseen objects. In recent years, although the deep convolutional network brings powerful visual modeling capabilities to the ZSL task, its visual features have severe pattern inertia and lack of representation of semantic relationships, which leads to severe bias and ambiguity. In response to this, we propose the Graph-based Visual-Semantic Entanglement Network to conduct graph modeling of visual features, which is mapped to semantic attributes by using a knowledge graph, it contains several novel designs: 1. it establishes a multi-path entangled network with the convolutional neural network (CNN) and the graph convolutional network (GCN), which input the visual features from CNN to GCN to model the implicit semantic relations, then GCN feedback the graph modeled information to CNN features; 2. it uses attribute word vectors as the target for the graph semantic modeling of GCN, which forms a self-consistent regression for graph modeling and supervise GCN to learn more personalized attribute relations; 3. it fuses and supplements the hierarchical visual-semantic features refined by graph modeling into visual embedding. By promoting the semantic linkage modeling of visual features, our method outperforms state-of-the-art approaches on multiple representative ZSL datasets: AwA2, CUB, and SUN.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://export.arxiv.org/pdf/2006.04648
- OA Status
- green
- Cited By
- 4
- References
- 62
- Related Works
- 20
- OpenAlex ID
- https://openalex.org/W3033199763
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3033199763Canonical identifier for this work in OpenAlex
- Title
-
Semantic Graph-enhanced Visual Network for Zero-shot LearningWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-06-08Full publication date if available
- Authors
-
Yang Hu, Guihua Wen, Adriane Chapman, Pei Yang, Mingnan Luo, Yingxue Xu, Dan Dai, Wendy HallList of authors in order
- Landing page
-
https://export.arxiv.org/pdf/2006.04648Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://export.arxiv.org/pdf/2006.04648Direct OA link when available
- Concepts
-
Computer science, Graph, Artificial intelligence, Convolutional neural network, Ambiguity, Visualization, Pattern recognition (psychology), Theoretical computer science, Natural language processing, Machine learning, Programming languageTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
4Total citation count in OpenAlex
- Citations by year (recent)
-
2022: 1, 2021: 3Per-year citation counts (last 5 years)
- References (count)
-
62Number of works referenced by this work
- Related works (count)
-
20Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3033199763 |
|---|---|
| doi | |
| ids.mag | 3033199763 |
| ids.openalex | https://openalex.org/W3033199763 |
| fwci | |
| type | preprint |
| title | Semantic Graph-enhanced Visual Network for Zero-shot Learning |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11307 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Domain Adaptation and Few-Shot Learning |
| topics[1].id | https://openalex.org/T11714 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9997000098228455 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Multimodal Machine Learning Applications |
| topics[2].id | https://openalex.org/T10812 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9797000288963318 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Human Pose and Action Recognition |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7551903128623962 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C132525143 |
| concepts[1].level | 2 |
| concepts[1].score | 0.585299551486969 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q141488 |
| concepts[1].display_name | Graph |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5653130412101746 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C81363708 |
| concepts[3].level | 2 |
| concepts[3].score | 0.54316645860672 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[3].display_name | Convolutional neural network |
| concepts[4].id | https://openalex.org/C2780522230 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5101104378700256 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1140419 |
| concepts[4].display_name | Ambiguity |
| concepts[5].id | https://openalex.org/C36464697 |
| concepts[5].level | 2 |
| concepts[5].score | 0.429842084646225 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q451553 |
| concepts[5].display_name | Visualization |
| concepts[6].id | https://openalex.org/C153180895 |
| concepts[6].level | 2 |
| concepts[6].score | 0.42416924238204956 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[6].display_name | Pattern recognition (psychology) |
| concepts[7].id | https://openalex.org/C80444323 |
| concepts[7].level | 1 |
| concepts[7].score | 0.4130333960056305 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[7].display_name | Theoretical computer science |
| concepts[8].id | https://openalex.org/C204321447 |
| concepts[8].level | 1 |
| concepts[8].score | 0.3553833067417145 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[8].display_name | Natural language processing |
| concepts[9].id | https://openalex.org/C119857082 |
| concepts[9].level | 1 |
| concepts[9].score | 0.3238460421562195 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[9].display_name | Machine learning |
| concepts[10].id | https://openalex.org/C199360897 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[10].display_name | Programming language |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7551903128623962 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/graph |
| keywords[1].score | 0.585299551486969 |
| keywords[1].display_name | Graph |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.5653130412101746 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[3].score | 0.54316645860672 |
| keywords[3].display_name | Convolutional neural network |
| keywords[4].id | https://openalex.org/keywords/ambiguity |
| keywords[4].score | 0.5101104378700256 |
| keywords[4].display_name | Ambiguity |
| keywords[5].id | https://openalex.org/keywords/visualization |
| keywords[5].score | 0.429842084646225 |
| keywords[5].display_name | Visualization |
| keywords[6].id | https://openalex.org/keywords/pattern-recognition |
| keywords[6].score | 0.42416924238204956 |
| keywords[6].display_name | Pattern recognition (psychology) |
| keywords[7].id | https://openalex.org/keywords/theoretical-computer-science |
| keywords[7].score | 0.4130333960056305 |
| keywords[7].display_name | Theoretical computer science |
| keywords[8].id | https://openalex.org/keywords/natural-language-processing |
| keywords[8].score | 0.3553833067417145 |
| keywords[8].display_name | Natural language processing |
| keywords[9].id | https://openalex.org/keywords/machine-learning |
| keywords[9].score | 0.3238460421562195 |
| keywords[9].display_name | Machine learning |
| language | en |
| locations[0].id | mag:3033199763 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | arXiv (Cornell University) |
| locations[0].landing_page_url | http://export.arxiv.org/pdf/2006.04648 |
| authorships[0].author.id | https://openalex.org/A5025084930 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-4856-5014 |
| authorships[0].author.display_name | Yang Hu |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yang Hu |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5101802990 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-9709-1126 |
| authorships[1].author.display_name | Guihua Wen |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Guihua Wen |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5013015057 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-3814-2587 |
| authorships[2].author.display_name | Adriane Chapman |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Adriane Chapman |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5019594660 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-8926-9695 |
| authorships[3].author.display_name | Pei Yang |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Pei Yang |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5022794162 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Mingnan Luo |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Mingnan Luo |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5089045263 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-9657-3107 |
| authorships[5].author.display_name | Yingxue Xu |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Yingxue Xu |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5101614117 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-1287-7569 |
| authorships[6].author.display_name | Dan Dai |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Dan Dai |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5000716606 |
| authorships[7].author.orcid | https://orcid.org/0000-0003-4327-7811 |
| authorships[7].author.display_name | Wendy Hall |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Wendy Hall |
| authorships[7].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | http://export.arxiv.org/pdf/2006.04648 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Semantic Graph-enhanced Visual Network for Zero-shot Learning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-10-10T17:16:08.811792 |
| primary_topic.id | https://openalex.org/T11307 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Domain Adaptation and Few-Shot Learning |
| related_works | https://openalex.org/W3164027444, https://openalex.org/W3130619032, https://openalex.org/W3103651098, https://openalex.org/W2962791511, https://openalex.org/W2614683825, https://openalex.org/W2994016173, https://openalex.org/W2965965307, https://openalex.org/W2586624428, https://openalex.org/W2611535482, https://openalex.org/W3109662464, https://openalex.org/W2951790836, https://openalex.org/W2051398366, https://openalex.org/W94911749, https://openalex.org/W2386468137, https://openalex.org/W3180378441, https://openalex.org/W3003487319, https://openalex.org/W2123049467, https://openalex.org/W2969852135, https://openalex.org/W2096605938, https://openalex.org/W2969659868 |
| cited_by_count | 4 |
| counts_by_year[0].year | 2022 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2021 |
| counts_by_year[1].cited_by_count | 3 |
| locations_count | 1 |
| best_oa_location.id | mag:3033199763 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | arXiv (Cornell University) |
| best_oa_location.landing_page_url | http://export.arxiv.org/pdf/2006.04648 |
| primary_location.id | mag:3033199763 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | arXiv (Cornell University) |
| primary_location.landing_page_url | http://export.arxiv.org/pdf/2006.04648 |
| publication_date | 2020-06-08 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W2924476266, https://openalex.org/W2968397098, https://openalex.org/W2970732459, https://openalex.org/W3034978279, https://openalex.org/W2979739834, https://openalex.org/W2550553598, https://openalex.org/W2070148066, https://openalex.org/W2965973206, https://openalex.org/W2982407353, https://openalex.org/W2971588465, https://openalex.org/W3099206234, https://openalex.org/W2970733445, https://openalex.org/W2951313160, https://openalex.org/W2996232404, https://openalex.org/W2963499153, https://openalex.org/W2250539671, https://openalex.org/W2964062686, https://openalex.org/W2565639579, https://openalex.org/W2997987465, https://openalex.org/W3099808062, https://openalex.org/W3004319625, https://openalex.org/W2735810033, https://openalex.org/W2964207259, https://openalex.org/W3035655772, https://openalex.org/W1498436455, https://openalex.org/W2991813857, https://openalex.org/W2791906491, https://openalex.org/W2134270519, https://openalex.org/W2950319135, https://openalex.org/W2949823873, https://openalex.org/W2963545832, https://openalex.org/W2913618459, https://openalex.org/W3008273026, https://openalex.org/W2982112268, https://openalex.org/W2971105989, https://openalex.org/W3014225712, https://openalex.org/W1686810756, https://openalex.org/W3034730995, https://openalex.org/W1522301498, https://openalex.org/W2896457183, https://openalex.org/W2962858109, https://openalex.org/W2950620323, https://openalex.org/W2794925779, https://openalex.org/W652269744, https://openalex.org/W2978762605, https://openalex.org/W1797268635, https://openalex.org/W2979300990, https://openalex.org/W2951478085, https://openalex.org/W2963091558, https://openalex.org/W2098411764, https://openalex.org/W2803437449, https://openalex.org/W2963486920, https://openalex.org/W1858576077, https://openalex.org/W2493916176, https://openalex.org/W3022478135, https://openalex.org/W3088406982, https://openalex.org/W3000538487, https://openalex.org/W2968074593, https://openalex.org/W2558748708, https://openalex.org/W2519887557, https://openalex.org/W2125027820, https://openalex.org/W2194775991 |
| referenced_works_count | 62 |
| abstract_inverted_index.a | 77, 88, 147 |
| abstract_inverted_index.1. | 85 |
| abstract_inverted_index.2. | 129 |
| abstract_inverted_index.3. | 162 |
| abstract_inverted_index.By | 178 |
| abstract_inverted_index.In | 13, 51 |
| abstract_inverted_index.as | 135 |
| abstract_inverted_index.by | 75, 172 |
| abstract_inverted_index.is | 70 |
| abstract_inverted_index.it | 80, 86, 130, 163 |
| abstract_inverted_index.of | 10, 39, 41, 66, 143, 184 |
| abstract_inverted_index.on | 192 |
| abstract_inverted_index.to | 5, 26, 46, 53, 62, 72, 111, 113, 126, 156 |
| abstract_inverted_index.we | 55 |
| abstract_inverted_index.CNN | 110, 127 |
| abstract_inverted_index.GCN | 112, 120, 155 |
| abstract_inverted_index.ZSL | 28, 195 |
| abstract_inverted_index.and | 37, 49, 98, 153, 165, 199 |
| abstract_inverted_index.for | 138, 150 |
| abstract_inverted_index.its | 30 |
| abstract_inverted_index.our | 187 |
| abstract_inverted_index.the | 7, 17, 27, 57, 93, 99, 106, 115, 122, 136, 139, 167, 180 |
| abstract_inverted_index.CUB, | 198 |
| abstract_inverted_index.GCN, | 144 |
| abstract_inverted_index.SUN. | 200 |
| abstract_inverted_index.bias | 48 |
| abstract_inverted_index.deep | 18 |
| abstract_inverted_index.from | 109 |
| abstract_inverted_index.have | 33 |
| abstract_inverted_index.into | 175 |
| abstract_inverted_index.lack | 38 |
| abstract_inverted_index.more | 158 |
| abstract_inverted_index.then | 119 |
| abstract_inverted_index.uses | 2, 131 |
| abstract_inverted_index.with | 92 |
| abstract_inverted_index.word | 133 |
| abstract_inverted_index.(CNN) | 97 |
| abstract_inverted_index.AwA2, | 197 |
| abstract_inverted_index.forms | 146 |
| abstract_inverted_index.fuses | 164 |
| abstract_inverted_index.graph | 64, 100, 123, 140, 151, 173 |
| abstract_inverted_index.input | 105 |
| abstract_inverted_index.leads | 45 |
| abstract_inverted_index.learn | 157 |
| abstract_inverted_index.model | 114 |
| abstract_inverted_index.novel | 83 |
| abstract_inverted_index.space | 9 |
| abstract_inverted_index.task, | 29 |
| abstract_inverted_index.this, | 54 |
| abstract_inverted_index.using | 76 |
| abstract_inverted_index.which | 44, 69, 104, 145 |
| abstract_inverted_index.(GCN), | 103 |
| abstract_inverted_index.brings | 21 |
| abstract_inverted_index.graph, | 79 |
| abstract_inverted_index.mapped | 71 |
| abstract_inverted_index.method | 188 |
| abstract_inverted_index.neural | 95 |
| abstract_inverted_index.recent | 14 |
| abstract_inverted_index.search | 8 |
| abstract_inverted_index.severe | 34, 47 |
| abstract_inverted_index.target | 137 |
| abstract_inverted_index.unseen | 11 |
| abstract_inverted_index.visual | 23, 31, 67, 107, 176, 185 |
| abstract_inverted_index.years, | 15 |
| abstract_inverted_index.Network | 61 |
| abstract_inverted_index.conduct | 63 |
| abstract_inverted_index.connect | 6 |
| abstract_inverted_index.inertia | 36 |
| abstract_inverted_index.linkage | 182 |
| abstract_inverted_index.modeled | 124 |
| abstract_inverted_index.network | 20, 91, 96, 102 |
| abstract_inverted_index.pattern | 35 |
| abstract_inverted_index.propose | 56 |
| abstract_inverted_index.refined | 171 |
| abstract_inverted_index.several | 82 |
| abstract_inverted_index.vectors | 134 |
| abstract_inverted_index.although | 16 |
| abstract_inverted_index.contains | 81 |
| abstract_inverted_index.designs: | 84 |
| abstract_inverted_index.features | 32, 108, 170 |
| abstract_inverted_index.feedback | 121 |
| abstract_inverted_index.implicit | 116 |
| abstract_inverted_index.learning | 1 |
| abstract_inverted_index.modeling | 24, 65, 142, 152, 174, 183 |
| abstract_inverted_index.multiple | 193 |
| abstract_inverted_index.objects. | 12 |
| abstract_inverted_index.powerful | 22 |
| abstract_inverted_index.response | 52 |
| abstract_inverted_index.semantic | 3, 42, 73, 117, 141, 181 |
| abstract_inverted_index.Zero-shot | 0 |
| abstract_inverted_index.attribute | 132, 160 |
| abstract_inverted_index.datasets: | 196 |
| abstract_inverted_index.entangled | 90 |
| abstract_inverted_index.features, | 68, 186 |
| abstract_inverted_index.features; | 128 |
| abstract_inverted_index.knowledge | 78 |
| abstract_inverted_index.promoting | 179 |
| abstract_inverted_index.supervise | 154 |
| abstract_inverted_index.ambiguity. | 50 |
| abstract_inverted_index.approaches | 191 |
| abstract_inverted_index.attributes | 4, 74 |
| abstract_inverted_index.embedding. | 177 |
| abstract_inverted_index.multi-path | 89 |
| abstract_inverted_index.regression | 149 |
| abstract_inverted_index.relations, | 118 |
| abstract_inverted_index.relations; | 161 |
| abstract_inverted_index.Graph-based | 58 |
| abstract_inverted_index.establishes | 87 |
| abstract_inverted_index.information | 125 |
| abstract_inverted_index.outperforms | 189 |
| abstract_inverted_index.supplements | 166 |
| abstract_inverted_index.Entanglement | 60 |
| abstract_inverted_index.capabilities | 25 |
| abstract_inverted_index.hierarchical | 168 |
| abstract_inverted_index.personalized | 159 |
| abstract_inverted_index.convolutional | 19, 94, 101 |
| abstract_inverted_index.relationships, | 43 |
| abstract_inverted_index.representation | 40 |
| abstract_inverted_index.representative | 194 |
| abstract_inverted_index.Visual-Semantic | 59 |
| abstract_inverted_index.self-consistent | 148 |
| abstract_inverted_index.visual-semantic | 169 |
| abstract_inverted_index.state-of-the-art | 190 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 8 |
| citation_normalized_percentile |