Semantic Novelty Detection in Natural Language Descriptions Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.18653/v1/2021.emnlp-main.66
This paper proposes to study a fine-grained semantic novelty detection task, which can be illustrated with the following example. It is normal that a person walks a dog in the park, but if someone says "A man is walking a chicken in the park", it is novel. Given a set of natural language descriptions of normal scenes, we want to identify descriptions of novel scenes. We are not aware of any existing work that solves the problem. Although existing novelty or anomaly detection algorithms are applicable, since they are usually topic-based, they perform poorly on our fine-grained semantic novelty detection task. This paper proposes an effective model (called GAT-MA) to solve the problem and also contributes a new dataset. Experimental evaluation shows that GAT-MA outperforms 11 baselines by large margins.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.18653/v1/2021.emnlp-main.66
- https://aclanthology.org/2021.emnlp-main.66.pdf
- OA Status
- hybrid
- Cited By
- 9
- References
- 115
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3214699082
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3214699082Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.18653/v1/2021.emnlp-main.66Digital Object Identifier
- Title
-
Semantic Novelty Detection in Natural Language DescriptionsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-01-01Full publication date if available
- Authors
-
Nianzu Ma, Alexander Politowicz, Sahisnu Mazumder, Jiahua Chen, Bing Liu, Eric Robertson, Scott S. GrigsbyList of authors in order
- Landing page
-
https://doi.org/10.18653/v1/2021.emnlp-main.66Publisher landing page
- PDF URL
-
https://aclanthology.org/2021.emnlp-main.66.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://aclanthology.org/2021.emnlp-main.66.pdfDirect OA link when available
- Concepts
-
Novelty, Novelty detection, Computer science, Task (project management), Artificial intelligence, Set (abstract data type), Anomaly detection, Natural language processing, Natural language, Natural language understanding, Semantics (computer science), Natural (archaeology), Machine learning, History, Theology, Programming language, Economics, Philosophy, Archaeology, ManagementTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
9Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 3, 2023: 4, 2022: 1Per-year citation counts (last 5 years)
- References (count)
-
115Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3214699082 |
|---|---|
| doi | https://doi.org/10.18653/v1/2021.emnlp-main.66 |
| ids.doi | https://doi.org/10.18653/v1/2021.emnlp-main.66 |
| ids.mag | 3214699082 |
| ids.openalex | https://openalex.org/W3214699082 |
| fwci | 0.98095765 |
| type | article |
| title | Semantic Novelty Detection in Natural Language Descriptions |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 882 |
| biblio.first_page | 866 |
| topics[0].id | https://openalex.org/T11512 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9991999864578247 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Anomaly Detection Techniques and Applications |
| topics[1].id | https://openalex.org/T11819 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9905999898910522 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2713 |
| topics[1].subfield.display_name | Epidemiology |
| topics[1].display_name | Data-Driven Disease Surveillance |
| topics[2].id | https://openalex.org/T10400 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9894000291824341 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1705 |
| topics[2].subfield.display_name | Computer Networks and Communications |
| topics[2].display_name | Network Security and Intrusion Detection |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2778738651 |
| concepts[0].level | 2 |
| concepts[0].score | 0.9262242913246155 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q16546687 |
| concepts[0].display_name | Novelty |
| concepts[1].id | https://openalex.org/C2778924833 |
| concepts[1].level | 3 |
| concepts[1].score | 0.8387330770492554 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q7064603 |
| concepts[1].display_name | Novelty detection |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.8246211409568787 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C2780451532 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6912354230880737 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q759676 |
| concepts[3].display_name | Task (project management) |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5896385908126831 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C177264268 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5875028967857361 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1514741 |
| concepts[5].display_name | Set (abstract data type) |
| concepts[6].id | https://openalex.org/C739882 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5711173415184021 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q3560506 |
| concepts[6].display_name | Anomaly detection |
| concepts[7].id | https://openalex.org/C204321447 |
| concepts[7].level | 1 |
| concepts[7].score | 0.5389268398284912 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[7].display_name | Natural language processing |
| concepts[8].id | https://openalex.org/C195324797 |
| concepts[8].level | 2 |
| concepts[8].score | 0.5133084654808044 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q33742 |
| concepts[8].display_name | Natural language |
| concepts[9].id | https://openalex.org/C2779439875 |
| concepts[9].level | 3 |
| concepts[9].score | 0.44031885266304016 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1078276 |
| concepts[9].display_name | Natural language understanding |
| concepts[10].id | https://openalex.org/C184337299 |
| concepts[10].level | 2 |
| concepts[10].score | 0.43425416946411133 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1437428 |
| concepts[10].display_name | Semantics (computer science) |
| concepts[11].id | https://openalex.org/C2776608160 |
| concepts[11].level | 2 |
| concepts[11].score | 0.41206198930740356 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q4785462 |
| concepts[11].display_name | Natural (archaeology) |
| concepts[12].id | https://openalex.org/C119857082 |
| concepts[12].level | 1 |
| concepts[12].score | 0.3218037486076355 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[12].display_name | Machine learning |
| concepts[13].id | https://openalex.org/C95457728 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q309 |
| concepts[13].display_name | History |
| concepts[14].id | https://openalex.org/C27206212 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q34178 |
| concepts[14].display_name | Theology |
| concepts[15].id | https://openalex.org/C199360897 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[15].display_name | Programming language |
| concepts[16].id | https://openalex.org/C162324750 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[16].display_name | Economics |
| concepts[17].id | https://openalex.org/C138885662 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[17].display_name | Philosophy |
| concepts[18].id | https://openalex.org/C166957645 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q23498 |
| concepts[18].display_name | Archaeology |
| concepts[19].id | https://openalex.org/C187736073 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q2920921 |
| concepts[19].display_name | Management |
| keywords[0].id | https://openalex.org/keywords/novelty |
| keywords[0].score | 0.9262242913246155 |
| keywords[0].display_name | Novelty |
| keywords[1].id | https://openalex.org/keywords/novelty-detection |
| keywords[1].score | 0.8387330770492554 |
| keywords[1].display_name | Novelty detection |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.8246211409568787 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/task |
| keywords[3].score | 0.6912354230880737 |
| keywords[3].display_name | Task (project management) |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.5896385908126831 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/set |
| keywords[5].score | 0.5875028967857361 |
| keywords[5].display_name | Set (abstract data type) |
| keywords[6].id | https://openalex.org/keywords/anomaly-detection |
| keywords[6].score | 0.5711173415184021 |
| keywords[6].display_name | Anomaly detection |
| keywords[7].id | https://openalex.org/keywords/natural-language-processing |
| keywords[7].score | 0.5389268398284912 |
| keywords[7].display_name | Natural language processing |
| keywords[8].id | https://openalex.org/keywords/natural-language |
| keywords[8].score | 0.5133084654808044 |
| keywords[8].display_name | Natural language |
| keywords[9].id | https://openalex.org/keywords/natural-language-understanding |
| keywords[9].score | 0.44031885266304016 |
| keywords[9].display_name | Natural language understanding |
| keywords[10].id | https://openalex.org/keywords/semantics |
| keywords[10].score | 0.43425416946411133 |
| keywords[10].display_name | Semantics (computer science) |
| keywords[11].id | https://openalex.org/keywords/natural |
| keywords[11].score | 0.41206198930740356 |
| keywords[11].display_name | Natural (archaeology) |
| keywords[12].id | https://openalex.org/keywords/machine-learning |
| keywords[12].score | 0.3218037486076355 |
| keywords[12].display_name | Machine learning |
| language | en |
| locations[0].id | doi:10.18653/v1/2021.emnlp-main.66 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4363608991 |
| locations[0].source.issn | |
| locations[0].source.type | conference |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].source.host_organization_lineage | |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://aclanthology.org/2021.emnlp-main.66.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing |
| locations[0].landing_page_url | https://doi.org/10.18653/v1/2021.emnlp-main.66 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5041046265 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Nianzu Ma |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I39422238 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Computer Science, University of Illinois at Chicago, USA |
| authorships[0].affiliations[1].raw_affiliation_string | PAR Government Systems Corporation, USA |
| authorships[0].institutions[0].id | https://openalex.org/I39422238 |
| authorships[0].institutions[0].ror | https://ror.org/02mpq6x41 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I39422238 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | University of Illinois Chicago |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Nianzu Ma |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Computer Science, University of Illinois at Chicago, USA, PAR Government Systems Corporation, USA |
| authorships[1].author.id | https://openalex.org/A5076331761 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-6096-2031 |
| authorships[1].author.display_name | Alexander Politowicz |
| authorships[1].countries | US |
| authorships[1].affiliations[0].raw_affiliation_string | PAR Government Systems Corporation, USA |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I39422238 |
| authorships[1].affiliations[1].raw_affiliation_string | Department of Computer Science, University of Illinois at Chicago, USA |
| authorships[1].institutions[0].id | https://openalex.org/I39422238 |
| authorships[1].institutions[0].ror | https://ror.org/02mpq6x41 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I39422238 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | University of Illinois Chicago |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Alexander Politowicz |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Computer Science, University of Illinois at Chicago, USA, PAR Government Systems Corporation, USA |
| authorships[2].author.id | https://openalex.org/A5084534578 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-9144-3859 |
| authorships[2].author.display_name | Sahisnu Mazumder |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I39422238 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Computer Science, University of Illinois at Chicago, USA |
| authorships[2].affiliations[1].raw_affiliation_string | PAR Government Systems Corporation, USA |
| authorships[2].institutions[0].id | https://openalex.org/I39422238 |
| authorships[2].institutions[0].ror | https://ror.org/02mpq6x41 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I39422238 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | University of Illinois Chicago |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Sahisnu Mazumder |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Computer Science, University of Illinois at Chicago, USA, PAR Government Systems Corporation, USA |
| authorships[3].author.id | https://openalex.org/A5030780941 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-8064-4444 |
| authorships[3].author.display_name | Jiahua Chen |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I39422238 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Computer Science, University of Illinois at Chicago, USA |
| authorships[3].affiliations[1].raw_affiliation_string | PAR Government Systems Corporation, USA |
| authorships[3].institutions[0].id | https://openalex.org/I39422238 |
| authorships[3].institutions[0].ror | https://ror.org/02mpq6x41 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I39422238 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | University of Illinois Chicago |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Jiahua Chen |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Computer Science, University of Illinois at Chicago, USA, PAR Government Systems Corporation, USA |
| authorships[4].author.id | https://openalex.org/A5039448597 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-2874-2746 |
| authorships[4].author.display_name | Bing Liu |
| authorships[4].countries | US |
| authorships[4].affiliations[0].raw_affiliation_string | PAR Government Systems Corporation, USA |
| authorships[4].affiliations[1].institution_ids | https://openalex.org/I39422238 |
| authorships[4].affiliations[1].raw_affiliation_string | Department of Computer Science, University of Illinois at Chicago, USA |
| authorships[4].institutions[0].id | https://openalex.org/I39422238 |
| authorships[4].institutions[0].ror | https://ror.org/02mpq6x41 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I39422238 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | University of Illinois Chicago |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Bing Liu |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Computer Science, University of Illinois at Chicago, USA, PAR Government Systems Corporation, USA |
| authorships[5].author.id | https://openalex.org/A5082176233 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-4942-4619 |
| authorships[5].author.display_name | Eric Robertson |
| authorships[5].countries | US |
| authorships[5].affiliations[0].raw_affiliation_string | PAR Government Systems Corporation, USA |
| authorships[5].affiliations[1].institution_ids | https://openalex.org/I39422238 |
| authorships[5].affiliations[1].raw_affiliation_string | Department of Computer Science, University of Illinois at Chicago, USA |
| authorships[5].institutions[0].id | https://openalex.org/I39422238 |
| authorships[5].institutions[0].ror | https://ror.org/02mpq6x41 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I39422238 |
| authorships[5].institutions[0].country_code | US |
| authorships[5].institutions[0].display_name | University of Illinois Chicago |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Eric Robertson |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Computer Science, University of Illinois at Chicago, USA, PAR Government Systems Corporation, USA |
| authorships[6].author.id | https://openalex.org/A5002580950 |
| authorships[6].author.orcid | |
| authorships[6].author.display_name | Scott S. Grigsby |
| authorships[6].countries | US |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I39422238 |
| authorships[6].affiliations[0].raw_affiliation_string | Department of Computer Science, University of Illinois at Chicago, USA |
| authorships[6].affiliations[1].raw_affiliation_string | PAR Government Systems Corporation, USA |
| authorships[6].institutions[0].id | https://openalex.org/I39422238 |
| authorships[6].institutions[0].ror | https://ror.org/02mpq6x41 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I39422238 |
| authorships[6].institutions[0].country_code | US |
| authorships[6].institutions[0].display_name | University of Illinois Chicago |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Scott Grigsby |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Department of Computer Science, University of Illinois at Chicago, USA, PAR Government Systems Corporation, USA |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://aclanthology.org/2021.emnlp-main.66.pdf |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Semantic Novelty Detection in Natural Language Descriptions |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11512 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9991999864578247 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Anomaly Detection Techniques and Applications |
| related_works | https://openalex.org/W2064636555, https://openalex.org/W2585503716, https://openalex.org/W1939982668, https://openalex.org/W2105014086, https://openalex.org/W2076090200, https://openalex.org/W4312933423, https://openalex.org/W3025682415, https://openalex.org/W1532481220, https://openalex.org/W2081173909, https://openalex.org/W4382317424 |
| cited_by_count | 9 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 3 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 4 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.18653/v1/2021.emnlp-main.66 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4363608991 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | conference |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.source.host_organization_lineage | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://aclanthology.org/2021.emnlp-main.66.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | proceedings-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing |
| best_oa_location.landing_page_url | https://doi.org/10.18653/v1/2021.emnlp-main.66 |
| primary_location.id | doi:10.18653/v1/2021.emnlp-main.66 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4363608991 |
| primary_location.source.issn | |
| primary_location.source.type | conference |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.source.host_organization_lineage | |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://aclanthology.org/2021.emnlp-main.66.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing |
| primary_location.landing_page_url | https://doi.org/10.18653/v1/2021.emnlp-main.66 |
| publication_date | 2021-01-01 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W2132870739, https://openalex.org/W2124416056, https://openalex.org/W2803697594, https://openalex.org/W2003698958, https://openalex.org/W1861492603, https://openalex.org/W4289360748, https://openalex.org/W2963693742, https://openalex.org/W4285719527, https://openalex.org/W2277195237, https://openalex.org/W2250913209, https://openalex.org/W2963858333, https://openalex.org/W73694622, https://openalex.org/W2147298557, https://openalex.org/W2964121744, https://openalex.org/W3040266635, https://openalex.org/W2250861254, https://openalex.org/W2789159078, https://openalex.org/W2340896621, https://openalex.org/W2141365610, https://openalex.org/W2963523189, https://openalex.org/W2782717882, https://openalex.org/W2950170241, https://openalex.org/W1840435438, https://openalex.org/W3100726593, https://openalex.org/W2950339735, https://openalex.org/W2095657353, https://openalex.org/W2605920867, https://openalex.org/W1522301498, https://openalex.org/W2113522550, https://openalex.org/W2963159690, https://openalex.org/W1512036831, https://openalex.org/W3093711314, https://openalex.org/W3043138801, https://openalex.org/W3104770333, https://openalex.org/W2978491132, https://openalex.org/W2989667869, https://openalex.org/W2963049059, https://openalex.org/W2911790960, https://openalex.org/W2970583420, https://openalex.org/W2548036585, https://openalex.org/W4285723986, https://openalex.org/W2053959297, https://openalex.org/W2250754318, https://openalex.org/W2970080249, https://openalex.org/W4288265479, https://openalex.org/W2952409498, https://openalex.org/W2095705004, https://openalex.org/W1988107199, https://openalex.org/W2563981795, https://openalex.org/W3113425182, https://openalex.org/W1889081078, https://openalex.org/W2962772361, https://openalex.org/W2263785794, https://openalex.org/W3035075850, https://openalex.org/W3099409556, https://openalex.org/W4294367149, https://openalex.org/W4300363951, https://openalex.org/W2918342466, https://openalex.org/W1773149199, https://openalex.org/W2562218435, https://openalex.org/W2963101081, https://openalex.org/W2131904035, https://openalex.org/W3114149041, https://openalex.org/W3035529900, https://openalex.org/W2963353834, https://openalex.org/W3135550350, https://openalex.org/W2064675550, https://openalex.org/W2970161131, https://openalex.org/W4293321333, https://openalex.org/W2963235663, https://openalex.org/W3081228062, https://openalex.org/W2252217261, https://openalex.org/W2963924212, https://openalex.org/W1970655212, https://openalex.org/W2475167333, https://openalex.org/W3004380370, https://openalex.org/W2296719434, https://openalex.org/W2908460844, https://openalex.org/W2604365077, https://openalex.org/W2767414122, https://openalex.org/W2952768212, https://openalex.org/W2604226179, https://openalex.org/W2128050560, https://openalex.org/W2391561458, https://openalex.org/W2955356027, https://openalex.org/W2922428744, https://openalex.org/W2136480620, https://openalex.org/W2989150936, https://openalex.org/W1832693441, https://openalex.org/W3094358809, https://openalex.org/W2878470635, https://openalex.org/W1999471173, https://openalex.org/W2252076739, https://openalex.org/W3095898437, https://openalex.org/W2250539671, https://openalex.org/W2120401584, https://openalex.org/W2963921564, https://openalex.org/W1970088130, https://openalex.org/W2910068345, https://openalex.org/W4288419263, https://openalex.org/W2576792795, https://openalex.org/W2805206884, https://openalex.org/W3014773921, https://openalex.org/W3103225859, https://openalex.org/W2177614019, https://openalex.org/W3104110041, https://openalex.org/W2963918774, https://openalex.org/W2168185617, https://openalex.org/W2946609015, https://openalex.org/W2925312408, https://openalex.org/W2612292426, https://openalex.org/W2998617917, https://openalex.org/W4391602018, https://openalex.org/W3101923288, https://openalex.org/W2963341956 |
| referenced_works_count | 115 |
| abstract_inverted_index.a | 5, 23, 26, 39, 48, 116 |
| abstract_inverted_index."A | 35 |
| abstract_inverted_index.11 | 125 |
| abstract_inverted_index.It | 19 |
| abstract_inverted_index.We | 65 |
| abstract_inverted_index.an | 104 |
| abstract_inverted_index.be | 13 |
| abstract_inverted_index.by | 127 |
| abstract_inverted_index.if | 32 |
| abstract_inverted_index.in | 28, 41 |
| abstract_inverted_index.is | 20, 37, 45 |
| abstract_inverted_index.it | 44 |
| abstract_inverted_index.of | 50, 54, 62, 69 |
| abstract_inverted_index.on | 94 |
| abstract_inverted_index.or | 80 |
| abstract_inverted_index.to | 3, 59, 109 |
| abstract_inverted_index.we | 57 |
| abstract_inverted_index.and | 113 |
| abstract_inverted_index.any | 70 |
| abstract_inverted_index.are | 66, 84, 88 |
| abstract_inverted_index.but | 31 |
| abstract_inverted_index.can | 12 |
| abstract_inverted_index.dog | 27 |
| abstract_inverted_index.man | 36 |
| abstract_inverted_index.new | 117 |
| abstract_inverted_index.not | 67 |
| abstract_inverted_index.our | 95 |
| abstract_inverted_index.set | 49 |
| abstract_inverted_index.the | 16, 29, 42, 75, 111 |
| abstract_inverted_index.This | 0, 101 |
| abstract_inverted_index.also | 114 |
| abstract_inverted_index.says | 34 |
| abstract_inverted_index.that | 22, 73, 122 |
| abstract_inverted_index.they | 87, 91 |
| abstract_inverted_index.want | 58 |
| abstract_inverted_index.with | 15 |
| abstract_inverted_index.work | 72 |
| abstract_inverted_index.Given | 47 |
| abstract_inverted_index.aware | 68 |
| abstract_inverted_index.large | 128 |
| abstract_inverted_index.model | 106 |
| abstract_inverted_index.novel | 63 |
| abstract_inverted_index.paper | 1, 102 |
| abstract_inverted_index.park, | 30 |
| abstract_inverted_index.shows | 121 |
| abstract_inverted_index.since | 86 |
| abstract_inverted_index.solve | 110 |
| abstract_inverted_index.study | 4 |
| abstract_inverted_index.task, | 10 |
| abstract_inverted_index.task. | 100 |
| abstract_inverted_index.walks | 25 |
| abstract_inverted_index.which | 11 |
| abstract_inverted_index.GAT-MA | 123 |
| abstract_inverted_index.normal | 21, 55 |
| abstract_inverted_index.novel. | 46 |
| abstract_inverted_index.park", | 43 |
| abstract_inverted_index.person | 24 |
| abstract_inverted_index.poorly | 93 |
| abstract_inverted_index.solves | 74 |
| abstract_inverted_index.(called | 107 |
| abstract_inverted_index.GAT-MA) | 108 |
| abstract_inverted_index.anomaly | 81 |
| abstract_inverted_index.chicken | 40 |
| abstract_inverted_index.natural | 51 |
| abstract_inverted_index.novelty | 8, 79, 98 |
| abstract_inverted_index.perform | 92 |
| abstract_inverted_index.problem | 112 |
| abstract_inverted_index.scenes, | 56 |
| abstract_inverted_index.scenes. | 64 |
| abstract_inverted_index.someone | 33 |
| abstract_inverted_index.usually | 89 |
| abstract_inverted_index.walking | 38 |
| abstract_inverted_index.Although | 77 |
| abstract_inverted_index.dataset. | 118 |
| abstract_inverted_index.example. | 18 |
| abstract_inverted_index.existing | 71, 78 |
| abstract_inverted_index.identify | 60 |
| abstract_inverted_index.language | 52 |
| abstract_inverted_index.margins. | 129 |
| abstract_inverted_index.problem. | 76 |
| abstract_inverted_index.proposes | 2, 103 |
| abstract_inverted_index.semantic | 7, 97 |
| abstract_inverted_index.baselines | 126 |
| abstract_inverted_index.detection | 9, 82, 99 |
| abstract_inverted_index.effective | 105 |
| abstract_inverted_index.following | 17 |
| abstract_inverted_index.algorithms | 83 |
| abstract_inverted_index.evaluation | 120 |
| abstract_inverted_index.applicable, | 85 |
| abstract_inverted_index.contributes | 115 |
| abstract_inverted_index.illustrated | 14 |
| abstract_inverted_index.outperforms | 124 |
| abstract_inverted_index.Experimental | 119 |
| abstract_inverted_index.descriptions | 53, 61 |
| abstract_inverted_index.fine-grained | 6, 96 |
| abstract_inverted_index.topic-based, | 90 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 7 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/4 |
| sustainable_development_goals[0].score | 0.8100000023841858 |
| sustainable_development_goals[0].display_name | Quality Education |
| citation_normalized_percentile.value | 0.80054084 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |