Semantic Scene Completion via Integrating Instances and Scene in-the-Loop Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2104.03640
Semantic Scene Completion aims at reconstructing a complete 3D scene with precise voxel-wise semantics from a single-view depth or RGBD image. It is a crucial but challenging problem for indoor scene understanding. In this work, we present a novel framework named Scene-Instance-Scene Network (\textit{SISNet}), which takes advantages of both instance and scene level semantic information. Our method is capable of inferring fine-grained shape details as well as nearby objects whose semantic categories are easily mixed-up. The key insight is that we decouple the instances from a coarsely completed semantic scene instead of a raw input image to guide the reconstruction of instances and the overall scene. SISNet conducts iterative scene-to-instance (SI) and instance-to-scene (IS) semantic completion. Specifically, the SI is able to encode objects' surrounding context for effectively decoupling instances from the scene and each instance could be voxelized into higher resolution to capture finer details. With IS, fine-grained instance information can be integrated back into the 3D scene and thus leads to more accurate semantic scene completion. Utilizing such an iterative mechanism, the scene and instance completion benefits each other to achieve higher completion accuracy. Extensively experiments show that our proposed method consistently outperforms state-of-the-art methods on both real NYU, NYUCAD and synthetic SUNCG-RGBD datasets. The code and the supplementary material will be available at \url{https://github.com/yjcaimeow/SISNet}.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2104.03640
- https://arxiv.org/pdf/2104.03640
- OA Status
- green
- Cited By
- 7
- References
- 43
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3145127101
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3145127101Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2104.03640Digital Object Identifier
- Title
-
Semantic Scene Completion via Integrating Instances and Scene in-the-LoopWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-04-08Full publication date if available
- Authors
-
Yingjie Cai, Xuesong Chen, Chao Zhang, Kwan-Yee Lin, Xiaogang Wang, Hongsheng LiList of authors in order
- Landing page
-
https://arxiv.org/abs/2104.03640Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2104.03640Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2104.03640Direct OA link when available
- Concepts
-
Computer science, Artificial intelligence, Semantics (computer science), Computer vision, Code (set theory), Context (archaeology), Image (mathematics), ENCODE, Scene graph, Key (lock), Rendering (computer graphics), Paleontology, Chemistry, Biology, Gene, Biochemistry, Computer security, Set (abstract data type), Programming languageTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
7Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 3, 2023: 2, 2022: 1Per-year citation counts (last 5 years)
- References (count)
-
43Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3145127101 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2104.03640 |
| ids.doi | https://doi.org/10.48550/arxiv.2104.03640 |
| ids.mag | 3145127101 |
| ids.openalex | https://openalex.org/W3145127101 |
| fwci | |
| type | preprint |
| title | Semantic Scene Completion via Integrating Instances and Scene in-the-Loop |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10531 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Advanced Vision and Imaging |
| topics[1].id | https://openalex.org/T10191 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9987999796867371 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2202 |
| topics[1].subfield.display_name | Aerospace Engineering |
| topics[1].display_name | Robotics and Sensor-Based Localization |
| topics[2].id | https://openalex.org/T11211 |
| topics[2].field.id | https://openalex.org/fields/19 |
| topics[2].field.display_name | Earth and Planetary Sciences |
| topics[2].score | 0.9986000061035156 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1907 |
| topics[2].subfield.display_name | Geology |
| topics[2].display_name | 3D Surveying and Cultural Heritage |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8548260927200317 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.63917076587677 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C184337299 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6307579874992371 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1437428 |
| concepts[2].display_name | Semantics (computer science) |
| concepts[3].id | https://openalex.org/C31972630 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5076392889022827 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[3].display_name | Computer vision |
| concepts[4].id | https://openalex.org/C2776760102 |
| concepts[4].level | 3 |
| concepts[4].score | 0.5026443004608154 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q5139990 |
| concepts[4].display_name | Code (set theory) |
| concepts[5].id | https://openalex.org/C2779343474 |
| concepts[5].level | 2 |
| concepts[5].score | 0.48975586891174316 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q3109175 |
| concepts[5].display_name | Context (archaeology) |
| concepts[6].id | https://openalex.org/C115961682 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4332144260406494 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[6].display_name | Image (mathematics) |
| concepts[7].id | https://openalex.org/C66746571 |
| concepts[7].level | 3 |
| concepts[7].score | 0.43057215213775635 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1134833 |
| concepts[7].display_name | ENCODE |
| concepts[8].id | https://openalex.org/C179372163 |
| concepts[8].level | 3 |
| concepts[8].score | 0.4271901845932007 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1406181 |
| concepts[8].display_name | Scene graph |
| concepts[9].id | https://openalex.org/C26517878 |
| concepts[9].level | 2 |
| concepts[9].score | 0.41323041915893555 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q228039 |
| concepts[9].display_name | Key (lock) |
| concepts[10].id | https://openalex.org/C205711294 |
| concepts[10].level | 2 |
| concepts[10].score | 0.1920163631439209 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q176953 |
| concepts[10].display_name | Rendering (computer graphics) |
| concepts[11].id | https://openalex.org/C151730666 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7205 |
| concepts[11].display_name | Paleontology |
| concepts[12].id | https://openalex.org/C185592680 |
| concepts[12].level | 0 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[12].display_name | Chemistry |
| concepts[13].id | https://openalex.org/C86803240 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[13].display_name | Biology |
| concepts[14].id | https://openalex.org/C104317684 |
| concepts[14].level | 2 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[14].display_name | Gene |
| concepts[15].id | https://openalex.org/C55493867 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q7094 |
| concepts[15].display_name | Biochemistry |
| concepts[16].id | https://openalex.org/C38652104 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q3510521 |
| concepts[16].display_name | Computer security |
| concepts[17].id | https://openalex.org/C177264268 |
| concepts[17].level | 2 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q1514741 |
| concepts[17].display_name | Set (abstract data type) |
| concepts[18].id | https://openalex.org/C199360897 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[18].display_name | Programming language |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.8548260927200317 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.63917076587677 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/semantics |
| keywords[2].score | 0.6307579874992371 |
| keywords[2].display_name | Semantics (computer science) |
| keywords[3].id | https://openalex.org/keywords/computer-vision |
| keywords[3].score | 0.5076392889022827 |
| keywords[3].display_name | Computer vision |
| keywords[4].id | https://openalex.org/keywords/code |
| keywords[4].score | 0.5026443004608154 |
| keywords[4].display_name | Code (set theory) |
| keywords[5].id | https://openalex.org/keywords/context |
| keywords[5].score | 0.48975586891174316 |
| keywords[5].display_name | Context (archaeology) |
| keywords[6].id | https://openalex.org/keywords/image |
| keywords[6].score | 0.4332144260406494 |
| keywords[6].display_name | Image (mathematics) |
| keywords[7].id | https://openalex.org/keywords/encode |
| keywords[7].score | 0.43057215213775635 |
| keywords[7].display_name | ENCODE |
| keywords[8].id | https://openalex.org/keywords/scene-graph |
| keywords[8].score | 0.4271901845932007 |
| keywords[8].display_name | Scene graph |
| keywords[9].id | https://openalex.org/keywords/key |
| keywords[9].score | 0.41323041915893555 |
| keywords[9].display_name | Key (lock) |
| keywords[10].id | https://openalex.org/keywords/rendering |
| keywords[10].score | 0.1920163631439209 |
| keywords[10].display_name | Rendering (computer graphics) |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2104.03640 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://arxiv.org/pdf/2104.03640 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2104.03640 |
| locations[1].id | doi:10.48550/arxiv.2104.03640 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2104.03640 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5100517197 |
| authorships[0].author.orcid | https://orcid.org/0009-0009-2013-4595 |
| authorships[0].author.display_name | Yingjie Cai |
| authorships[0].countries | HK |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I177725633 |
| authorships[0].affiliations[0].raw_affiliation_string | The Chinese University of Hong Kong,CUHK-SenseTime Joint Laboratory |
| authorships[0].institutions[0].id | https://openalex.org/I177725633 |
| authorships[0].institutions[0].ror | https://ror.org/00t33hh48 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I177725633 |
| authorships[0].institutions[0].country_code | HK |
| authorships[0].institutions[0].display_name | Chinese University of Hong Kong |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yingjie Cai |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | The Chinese University of Hong Kong,CUHK-SenseTime Joint Laboratory |
| authorships[1].author.id | https://openalex.org/A5012132969 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-9530-0644 |
| authorships[1].author.display_name | Xuesong Chen |
| authorships[1].countries | HK |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I177725633 |
| authorships[1].affiliations[0].raw_affiliation_string | The Chinese University of Hong Kong,CUHK-SenseTime Joint Laboratory |
| authorships[1].institutions[0].id | https://openalex.org/I177725633 |
| authorships[1].institutions[0].ror | https://ror.org/00t33hh48 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I177725633 |
| authorships[1].institutions[0].country_code | HK |
| authorships[1].institutions[0].display_name | Chinese University of Hong Kong |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Xuesong Chen |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | The Chinese University of Hong Kong,CUHK-SenseTime Joint Laboratory |
| authorships[2].author.id | https://openalex.org/A5100460272 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-3009-598X |
| authorships[2].author.display_name | Chao Zhang |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210155230 |
| authorships[2].affiliations[0].raw_affiliation_string | Samsung Research Institute China - Beijing (SRC-B) |
| authorships[2].institutions[0].id | https://openalex.org/I4210155230 |
| authorships[2].institutions[0].ror | https://ror.org/04yt00889 |
| authorships[2].institutions[0].type | company |
| authorships[2].institutions[0].lineage | https://openalex.org/I2250650973, https://openalex.org/I4210155230 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Samsung (China) |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Chao Zhang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Samsung Research Institute China - Beijing (SRC-B) |
| authorships[3].author.id | https://openalex.org/A5046965918 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-0175-6398 |
| authorships[3].author.display_name | Kwan-Yee Lin |
| authorships[3].countries | HK |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I177725633 |
| authorships[3].affiliations[0].raw_affiliation_string | The Chinese University of Hong Kong,CUHK-SenseTime Joint Laboratory |
| authorships[3].institutions[0].id | https://openalex.org/I177725633 |
| authorships[3].institutions[0].ror | https://ror.org/00t33hh48 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I177725633 |
| authorships[3].institutions[0].country_code | HK |
| authorships[3].institutions[0].display_name | Chinese University of Hong Kong |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Kwan-Yee Lin |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | The Chinese University of Hong Kong,CUHK-SenseTime Joint Laboratory |
| authorships[4].author.id | https://openalex.org/A5100444820 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-7929-5889 |
| authorships[4].author.display_name | Xiaogang Wang |
| authorships[4].countries | HK |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I177725633 |
| authorships[4].affiliations[0].raw_affiliation_string | The Chinese University of Hong Kong,CUHK-SenseTime Joint Laboratory |
| authorships[4].institutions[0].id | https://openalex.org/I177725633 |
| authorships[4].institutions[0].ror | https://ror.org/00t33hh48 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I177725633 |
| authorships[4].institutions[0].country_code | HK |
| authorships[4].institutions[0].display_name | Chinese University of Hong Kong |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Xiaogang Wang |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | The Chinese University of Hong Kong,CUHK-SenseTime Joint Laboratory |
| authorships[5].author.id | https://openalex.org/A5100732450 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-2664-7975 |
| authorships[5].author.display_name | Hongsheng Li |
| authorships[5].countries | HK |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I177725633 |
| authorships[5].affiliations[0].raw_affiliation_string | The Chinese University of Hong Kong,CUHK-SenseTime Joint Laboratory |
| authorships[5].institutions[0].id | https://openalex.org/I177725633 |
| authorships[5].institutions[0].ror | https://ror.org/00t33hh48 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I177725633 |
| authorships[5].institutions[0].country_code | HK |
| authorships[5].institutions[0].display_name | Chinese University of Hong Kong |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Hongsheng Li |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | The Chinese University of Hong Kong,CUHK-SenseTime Joint Laboratory |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2104.03640 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Semantic Scene Completion via Integrating Instances and Scene in-the-Loop |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10531 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Advanced Vision and Imaging |
| related_works | https://openalex.org/W2468279273, https://openalex.org/W2354198838, https://openalex.org/W1989130879, https://openalex.org/W2103419012, https://openalex.org/W2988126442, https://openalex.org/W1974414866, https://openalex.org/W2057568687, https://openalex.org/W2063982682, https://openalex.org/W4312518048, https://openalex.org/W2996769815 |
| cited_by_count | 7 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 3 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 2 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2104.03640 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2104.03640 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2104.03640 |
| primary_location.id | pmh:oai:arXiv.org:2104.03640 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://arxiv.org/pdf/2104.03640 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2104.03640 |
| publication_date | 2021-04-08 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W2965451719, https://openalex.org/W2557465155, https://openalex.org/W2891464919, https://openalex.org/W1927784829, https://openalex.org/W2519126067, https://openalex.org/W2886934227, https://openalex.org/W2886499109, https://openalex.org/W1990345222, https://openalex.org/W2964160369, https://openalex.org/W2981604966, https://openalex.org/W3128498749, https://openalex.org/W3035308182, https://openalex.org/W3034868495, https://openalex.org/W3108800063, https://openalex.org/W2097307110, https://openalex.org/W2785822691, https://openalex.org/W2444097022, https://openalex.org/W2963307292, https://openalex.org/W2953668091, https://openalex.org/W2412782625, https://openalex.org/W2963727135, https://openalex.org/W2962774226, https://openalex.org/W3034584726, https://openalex.org/W3035346742, https://openalex.org/W2049351243, https://openalex.org/W2097374608, https://openalex.org/W2997643725, https://openalex.org/W3034126769, https://openalex.org/W2963766190, https://openalex.org/W3012397227, https://openalex.org/W2988715931, https://openalex.org/W2229637417, https://openalex.org/W2086984226, https://openalex.org/W2963121255, https://openalex.org/W3009205130, https://openalex.org/W2560609797, https://openalex.org/W3034493208, https://openalex.org/W125693051, https://openalex.org/W3034626012, https://openalex.org/W3035014292, https://openalex.org/W2904332125, https://openalex.org/W1923184257, https://openalex.org/W2888815532 |
| referenced_works_count | 43 |
| abstract_inverted_index.a | 6, 15, 23, 37, 85, 92 |
| abstract_inverted_index.3D | 8, 157 |
| abstract_inverted_index.In | 32 |
| abstract_inverted_index.It | 21 |
| abstract_inverted_index.SI | 118 |
| abstract_inverted_index.an | 170 |
| abstract_inverted_index.as | 64, 66 |
| abstract_inverted_index.at | 4, 215 |
| abstract_inverted_index.be | 137, 152, 213 |
| abstract_inverted_index.is | 22, 57, 78, 119 |
| abstract_inverted_index.of | 47, 59, 91, 100 |
| abstract_inverted_index.on | 197 |
| abstract_inverted_index.or | 18 |
| abstract_inverted_index.to | 96, 121, 142, 162, 181 |
| abstract_inverted_index.we | 35, 80 |
| abstract_inverted_index.IS, | 147 |
| abstract_inverted_index.Our | 55 |
| abstract_inverted_index.The | 75, 206 |
| abstract_inverted_index.and | 50, 102, 111, 133, 159, 175, 202, 208 |
| abstract_inverted_index.are | 72 |
| abstract_inverted_index.but | 25 |
| abstract_inverted_index.can | 151 |
| abstract_inverted_index.for | 28, 126 |
| abstract_inverted_index.key | 76 |
| abstract_inverted_index.our | 190 |
| abstract_inverted_index.raw | 93 |
| abstract_inverted_index.the | 82, 98, 103, 117, 131, 156, 173, 209 |
| abstract_inverted_index.(IS) | 113 |
| abstract_inverted_index.(SI) | 110 |
| abstract_inverted_index.NYU, | 200 |
| abstract_inverted_index.RGBD | 19 |
| abstract_inverted_index.With | 146 |
| abstract_inverted_index.able | 120 |
| abstract_inverted_index.aims | 3 |
| abstract_inverted_index.back | 154 |
| abstract_inverted_index.both | 48, 198 |
| abstract_inverted_index.code | 207 |
| abstract_inverted_index.each | 134, 179 |
| abstract_inverted_index.from | 14, 84, 130 |
| abstract_inverted_index.into | 139, 155 |
| abstract_inverted_index.more | 163 |
| abstract_inverted_index.real | 199 |
| abstract_inverted_index.show | 188 |
| abstract_inverted_index.such | 169 |
| abstract_inverted_index.that | 79, 189 |
| abstract_inverted_index.this | 33 |
| abstract_inverted_index.thus | 160 |
| abstract_inverted_index.well | 65 |
| abstract_inverted_index.will | 212 |
| abstract_inverted_index.with | 10 |
| abstract_inverted_index.Scene | 1 |
| abstract_inverted_index.could | 136 |
| abstract_inverted_index.depth | 17 |
| abstract_inverted_index.finer | 144 |
| abstract_inverted_index.guide | 97 |
| abstract_inverted_index.image | 95 |
| abstract_inverted_index.input | 94 |
| abstract_inverted_index.leads | 161 |
| abstract_inverted_index.level | 52 |
| abstract_inverted_index.named | 40 |
| abstract_inverted_index.novel | 38 |
| abstract_inverted_index.other | 180 |
| abstract_inverted_index.scene | 9, 30, 51, 89, 132, 158, 166, 174 |
| abstract_inverted_index.shape | 62 |
| abstract_inverted_index.takes | 45 |
| abstract_inverted_index.which | 44 |
| abstract_inverted_index.whose | 69 |
| abstract_inverted_index.work, | 34 |
| abstract_inverted_index.NYUCAD | 201 |
| abstract_inverted_index.SISNet | 106 |
| abstract_inverted_index.easily | 73 |
| abstract_inverted_index.encode | 122 |
| abstract_inverted_index.higher | 140, 183 |
| abstract_inverted_index.image. | 20 |
| abstract_inverted_index.indoor | 29 |
| abstract_inverted_index.method | 56, 192 |
| abstract_inverted_index.nearby | 67 |
| abstract_inverted_index.scene. | 105 |
| abstract_inverted_index.Network | 42 |
| abstract_inverted_index.achieve | 182 |
| abstract_inverted_index.capable | 58 |
| abstract_inverted_index.capture | 143 |
| abstract_inverted_index.context | 125 |
| abstract_inverted_index.crucial | 24 |
| abstract_inverted_index.details | 63 |
| abstract_inverted_index.insight | 77 |
| abstract_inverted_index.instead | 90 |
| abstract_inverted_index.methods | 196 |
| abstract_inverted_index.objects | 68 |
| abstract_inverted_index.overall | 104 |
| abstract_inverted_index.precise | 11 |
| abstract_inverted_index.present | 36 |
| abstract_inverted_index.problem | 27 |
| abstract_inverted_index.Semantic | 0 |
| abstract_inverted_index.accurate | 164 |
| abstract_inverted_index.benefits | 178 |
| abstract_inverted_index.coarsely | 86 |
| abstract_inverted_index.complete | 7 |
| abstract_inverted_index.conducts | 107 |
| abstract_inverted_index.decouple | 81 |
| abstract_inverted_index.details. | 145 |
| abstract_inverted_index.instance | 49, 135, 149, 176 |
| abstract_inverted_index.material | 211 |
| abstract_inverted_index.objects' | 123 |
| abstract_inverted_index.proposed | 191 |
| abstract_inverted_index.semantic | 53, 70, 88, 114, 165 |
| abstract_inverted_index.Utilizing | 168 |
| abstract_inverted_index.accuracy. | 185 |
| abstract_inverted_index.available | 214 |
| abstract_inverted_index.completed | 87 |
| abstract_inverted_index.datasets. | 205 |
| abstract_inverted_index.framework | 39 |
| abstract_inverted_index.inferring | 60 |
| abstract_inverted_index.instances | 83, 101, 129 |
| abstract_inverted_index.iterative | 108, 171 |
| abstract_inverted_index.mixed-up. | 74 |
| abstract_inverted_index.semantics | 13 |
| abstract_inverted_index.synthetic | 203 |
| abstract_inverted_index.voxelized | 138 |
| abstract_inverted_index.Completion | 2 |
| abstract_inverted_index.SUNCG-RGBD | 204 |
| abstract_inverted_index.advantages | 46 |
| abstract_inverted_index.categories | 71 |
| abstract_inverted_index.completion | 177, 184 |
| abstract_inverted_index.decoupling | 128 |
| abstract_inverted_index.integrated | 153 |
| abstract_inverted_index.mechanism, | 172 |
| abstract_inverted_index.resolution | 141 |
| abstract_inverted_index.voxel-wise | 12 |
| abstract_inverted_index.Extensively | 186 |
| abstract_inverted_index.challenging | 26 |
| abstract_inverted_index.completion. | 115, 167 |
| abstract_inverted_index.effectively | 127 |
| abstract_inverted_index.experiments | 187 |
| abstract_inverted_index.information | 150 |
| abstract_inverted_index.outperforms | 194 |
| abstract_inverted_index.single-view | 16 |
| abstract_inverted_index.surrounding | 124 |
| abstract_inverted_index.consistently | 193 |
| abstract_inverted_index.fine-grained | 61, 148 |
| abstract_inverted_index.information. | 54 |
| abstract_inverted_index.Specifically, | 116 |
| abstract_inverted_index.supplementary | 210 |
| abstract_inverted_index.reconstructing | 5 |
| abstract_inverted_index.reconstruction | 99 |
| abstract_inverted_index.understanding. | 31 |
| abstract_inverted_index.state-of-the-art | 195 |
| abstract_inverted_index.instance-to-scene | 112 |
| abstract_inverted_index.scene-to-instance | 109 |
| abstract_inverted_index.(\textit{SISNet}), | 43 |
| abstract_inverted_index.Scene-Instance-Scene | 41 |
| abstract_inverted_index.\url{https://github.com/yjcaimeow/SISNet}. | 216 |
| cited_by_percentile_year | |
| countries_distinct_count | 2 |
| institutions_distinct_count | 6 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/11 |
| sustainable_development_goals[0].score | 0.5099999904632568 |
| sustainable_development_goals[0].display_name | Sustainable cities and communities |
| citation_normalized_percentile |