Semantic Segmentation for Brain Volumetry: A Deep Learning Approach Using U-Net on T1- and T2-Weighted Magnetic Resonance Imaging (MRI) Scans Article Swipe
Iman Atk
,
Alireza Zare
,
Mohammad Hadi Gharib
,
Gholamreza Roshandel
,
Dayan Amanian
·
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.2139/ssrn.5412854
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.2139/ssrn.5412854
Related Topics
Concepts
Metadata
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.2139/ssrn.5412854
- OA Status
- green
- References
- 25
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4413882536
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4413882536Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.2139/ssrn.5412854Digital Object Identifier
- Title
-
Semantic Segmentation for Brain Volumetry: A Deep Learning Approach Using U-Net on T1- and T2-Weighted Magnetic Resonance Imaging (MRI) ScansWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-01-01Full publication date if available
- Authors
-
Iman Atk, Alireza Zare, Mohammad Hadi Gharib, Gholamreza Roshandel, Dayan AmanianList of authors in order
- Landing page
-
https://doi.org/10.2139/ssrn.5412854Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.2139/ssrn.5412854Direct OA link when available
- Concepts
-
Magnetic resonance imaging, Segmentation, T2 weighted, Nuclear magnetic resonance, Neuroimaging, Artificial intelligence, Psychology, Computer science, Medicine, Radiology, Neuroscience, PhysicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
25Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4413882536 |
|---|---|
| doi | https://doi.org/10.2139/ssrn.5412854 |
| ids.doi | https://doi.org/10.2139/ssrn.5412854 |
| ids.openalex | https://openalex.org/W4413882536 |
| fwci | 0.0 |
| type | article |
| title | Semantic Segmentation for Brain Volumetry: A Deep Learning Approach Using U-Net on T1- and T2-Weighted Magnetic Resonance Imaging (MRI) Scans |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10052 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9372000098228455 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Medical Image Segmentation Techniques |
| topics[1].id | https://openalex.org/T12702 |
| topics[1].field.id | https://openalex.org/fields/28 |
| topics[1].field.display_name | Neuroscience |
| topics[1].score | 0.9275000095367432 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2808 |
| topics[1].subfield.display_name | Neurology |
| topics[1].display_name | Brain Tumor Detection and Classification |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C143409427 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7415839433670044 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q161238 |
| concepts[0].display_name | Magnetic resonance imaging |
| concepts[1].id | https://openalex.org/C89600930 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6025771498680115 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[1].display_name | Segmentation |
| concepts[2].id | https://openalex.org/C3017936213 |
| concepts[2].level | 3 |
| concepts[2].score | 0.5957390069961548 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q161238 |
| concepts[2].display_name | T2 weighted |
| concepts[3].id | https://openalex.org/C46141821 |
| concepts[3].level | 1 |
| concepts[3].score | 0.4865356981754303 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q209402 |
| concepts[3].display_name | Nuclear magnetic resonance |
| concepts[4].id | https://openalex.org/C58693492 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4271194636821747 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q551875 |
| concepts[4].display_name | Neuroimaging |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.3739115595817566 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C15744967 |
| concepts[6].level | 0 |
| concepts[6].score | 0.3080018162727356 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[6].display_name | Psychology |
| concepts[7].id | https://openalex.org/C41008148 |
| concepts[7].level | 0 |
| concepts[7].score | 0.2765563726425171 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[7].display_name | Computer science |
| concepts[8].id | https://openalex.org/C71924100 |
| concepts[8].level | 0 |
| concepts[8].score | 0.27139613032341003 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[8].display_name | Medicine |
| concepts[9].id | https://openalex.org/C126838900 |
| concepts[9].level | 1 |
| concepts[9].score | 0.22663366794586182 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q77604 |
| concepts[9].display_name | Radiology |
| concepts[10].id | https://openalex.org/C169760540 |
| concepts[10].level | 1 |
| concepts[10].score | 0.22526895999908447 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q207011 |
| concepts[10].display_name | Neuroscience |
| concepts[11].id | https://openalex.org/C121332964 |
| concepts[11].level | 0 |
| concepts[11].score | 0.18811267614364624 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[11].display_name | Physics |
| keywords[0].id | https://openalex.org/keywords/magnetic-resonance-imaging |
| keywords[0].score | 0.7415839433670044 |
| keywords[0].display_name | Magnetic resonance imaging |
| keywords[1].id | https://openalex.org/keywords/segmentation |
| keywords[1].score | 0.6025771498680115 |
| keywords[1].display_name | Segmentation |
| keywords[2].id | https://openalex.org/keywords/t2-weighted |
| keywords[2].score | 0.5957390069961548 |
| keywords[2].display_name | T2 weighted |
| keywords[3].id | https://openalex.org/keywords/nuclear-magnetic-resonance |
| keywords[3].score | 0.4865356981754303 |
| keywords[3].display_name | Nuclear magnetic resonance |
| keywords[4].id | https://openalex.org/keywords/neuroimaging |
| keywords[4].score | 0.4271194636821747 |
| keywords[4].display_name | Neuroimaging |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.3739115595817566 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/psychology |
| keywords[6].score | 0.3080018162727356 |
| keywords[6].display_name | Psychology |
| keywords[7].id | https://openalex.org/keywords/computer-science |
| keywords[7].score | 0.2765563726425171 |
| keywords[7].display_name | Computer science |
| keywords[8].id | https://openalex.org/keywords/medicine |
| keywords[8].score | 0.27139613032341003 |
| keywords[8].display_name | Medicine |
| keywords[9].id | https://openalex.org/keywords/radiology |
| keywords[9].score | 0.22663366794586182 |
| keywords[9].display_name | Radiology |
| keywords[10].id | https://openalex.org/keywords/neuroscience |
| keywords[10].score | 0.22526895999908447 |
| keywords[10].display_name | Neuroscience |
| keywords[11].id | https://openalex.org/keywords/physics |
| keywords[11].score | 0.18811267614364624 |
| keywords[11].display_name | Physics |
| language | en |
| locations[0].id | doi:10.2139/ssrn.5412854 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210172589 |
| locations[0].source.issn | 1556-5068 |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1556-5068 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | SSRN Electronic Journal |
| locations[0].source.host_organization | https://openalex.org/I1318003438 |
| locations[0].source.host_organization_name | RELX Group (Netherlands) |
| locations[0].source.host_organization_lineage | https://openalex.org/I1318003438 |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.2139/ssrn.5412854 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5119499398 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Iman Atk |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Iman Atk |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5108663919 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Alireza Zare |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Alireza Zare |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5084178832 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-4847-921X |
| authorships[2].author.display_name | Mohammad Hadi Gharib |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Mohammad Hadi Gharib |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5047601786 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-5494-0722 |
| authorships[3].author.display_name | Gholamreza Roshandel |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Gholamreza Roshandel |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5035823640 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-6088-2362 |
| authorships[4].author.display_name | Dayan Amanian |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Dayan Amanian |
| authorships[4].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.2139/ssrn.5412854 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Semantic Segmentation for Brain Volumetry: A Deep Learning Approach Using U-Net on T1- and T2-Weighted Magnetic Resonance Imaging (MRI) Scans |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10052 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9372000098228455 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Medical Image Segmentation Techniques |
| related_works | https://openalex.org/W4413060266, https://openalex.org/W2327340211, https://openalex.org/W2027542625, https://openalex.org/W4292199793, https://openalex.org/W2282195379, https://openalex.org/W2089784006, https://openalex.org/W2295388821, https://openalex.org/W2102312026, https://openalex.org/W1989723213, https://openalex.org/W2886617888 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.2139/ssrn.5412854 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210172589 |
| best_oa_location.source.issn | 1556-5068 |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1556-5068 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | SSRN Electronic Journal |
| best_oa_location.source.host_organization | https://openalex.org/I1318003438 |
| best_oa_location.source.host_organization_name | RELX Group (Netherlands) |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I1318003438 |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.2139/ssrn.5412854 |
| primary_location.id | doi:10.2139/ssrn.5412854 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210172589 |
| primary_location.source.issn | 1556-5068 |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1556-5068 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | SSRN Electronic Journal |
| primary_location.source.host_organization | https://openalex.org/I1318003438 |
| primary_location.source.host_organization_name | RELX Group (Netherlands) |
| primary_location.source.host_organization_lineage | https://openalex.org/I1318003438 |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.2139/ssrn.5412854 |
| publication_date | 2025-01-01 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4254907286, https://openalex.org/W2938615434, https://openalex.org/W3000078051, https://openalex.org/W3213385048, https://openalex.org/W2995739647, https://openalex.org/W3025773226, https://openalex.org/W3165538756, https://openalex.org/W3006761052, https://openalex.org/W2767381938, https://openalex.org/W2989789399, https://openalex.org/W2885069035, https://openalex.org/W3204734566, https://openalex.org/W4308311931, https://openalex.org/W4403476294, https://openalex.org/W4205818675, https://openalex.org/W3014301887, https://openalex.org/W4205964412, https://openalex.org/W4402242861, https://openalex.org/W4403158538, https://openalex.org/W4391655225, https://openalex.org/W3161829336, https://openalex.org/W4391289166, https://openalex.org/W3096947210, https://openalex.org/W1984070131, https://openalex.org/W3035546112 |
| referenced_works_count | 25 |
| abstract_inverted_index | |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile.value | 0.40504566 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |