Semantic segmentation via pixel‐to‐center similarity calculation Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1049/cit2.12245
Since the fully convolutional network has achieved great success in semantic segmentation, lots of works have been proposed to extract discriminative pixel representations. However, the authors observe that existing methods still suffer from two typical challenges: (i) The intra‐class feature variation between different scenes may be large, leading to the difficulty in maintaining the consistency between same‐class pixels from different scenes; (ii) The inter‐class feature distinction in the same scene could be small, resulting in the limited performance to distinguish different classes in each scene. The authors first rethink semantic segmentation from a perspective of similarity between pixels and class centers. Each weight vector of the segmentation head represents its corresponding semantic class in the whole dataset, which can be regarded as the embedding of the class center. Thus, the pixel‐wise classification amounts to computing similarity in the final feature space between pixels and the class centers. Under this novel view, the authors propose a Class Center Similarity (CCS) layer to address the above‐mentioned challenges by generating adaptive class centers conditioned on each scenes and supervising the similarities between class centers. The CCS layer utilises the Adaptive Class Center Module to generate class centers conditioned on each scene, which adapt the large intra‐class variation between different scenes. Specially designed Class Distance Loss (CD Loss) is introduced to control both inter‐class and intra‐class distances based on the predicted center‐to‐center and pixel‐to‐center similarity. Finally, the CCS layer outputs the processed pixel‐to‐center similarity as the segmentation prediction. Extensive experiments demonstrate that our model performs favourably against the state‐of‐the‐art methods.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1049/cit2.12245
- https://onlinelibrary.wiley.com/doi/pdfdirect/10.1049/cit2.12245
- OA Status
- gold
- Cited By
- 4
- References
- 38
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4380052029
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4380052029Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1049/cit2.12245Digital Object Identifier
- Title
-
Semantic segmentation via pixel‐to‐center similarity calculationWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-06-07Full publication date if available
- Authors
-
Dongyue Wu, Zilin Guo, Aoyan Li, Changqian Yu, Nong Sang, Changxin GaoList of authors in order
- Landing page
-
https://doi.org/10.1049/cit2.12245Publisher landing page
- PDF URL
-
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1049/cit2.12245Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1049/cit2.12245Direct OA link when available
- Concepts
-
Pixel, Artificial intelligence, Computer science, Segmentation, Similarity (geometry), Feature (linguistics), Pattern recognition (psychology), Class (philosophy), Discriminative model, Center (category theory), Computer vision, Image (mathematics), Crystallography, Linguistics, Philosophy, ChemistryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
4Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2, 2024: 1, 2023: 1Per-year citation counts (last 5 years)
- References (count)
-
38Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4380052029 |
|---|---|
| doi | https://doi.org/10.1049/cit2.12245 |
| ids.doi | https://doi.org/10.1049/cit2.12245 |
| ids.openalex | https://openalex.org/W4380052029 |
| fwci | 0.72787336 |
| type | article |
| title | Semantic segmentation via pixel‐to‐center similarity calculation |
| awards[0].id | https://openalex.org/G7509559500 |
| awards[0].funder_id | https://openalex.org/F4320321001 |
| awards[0].display_name | |
| awards[0].funder_award_id | 62176097 |
| awards[0].funder_display_name | National Natural Science Foundation of China |
| biblio.issue | 1 |
| biblio.volume | 9 |
| biblio.last_page | 100 |
| biblio.first_page | 87 |
| topics[0].id | https://openalex.org/T10036 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9997000098228455 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Advanced Neural Network Applications |
| topics[1].id | https://openalex.org/T11307 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9993000030517578 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Domain Adaptation and Few-Shot Learning |
| topics[2].id | https://openalex.org/T10627 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9973000288009644 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Advanced Image and Video Retrieval Techniques |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| is_xpac | False |
| apc_list.value | 2200 |
| apc_list.currency | USD |
| apc_list.value_usd | 2200 |
| apc_paid.value | 2200 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 2200 |
| concepts[0].id | https://openalex.org/C160633673 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7299884557723999 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q355198 |
| concepts[0].display_name | Pixel |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.7008612155914307 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.6596730351448059 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C89600930 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6177319884300232 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[3].display_name | Segmentation |
| concepts[4].id | https://openalex.org/C103278499 |
| concepts[4].level | 3 |
| concepts[4].score | 0.610255241394043 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q254465 |
| concepts[4].display_name | Similarity (geometry) |
| concepts[5].id | https://openalex.org/C2776401178 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5661628246307373 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[5].display_name | Feature (linguistics) |
| concepts[6].id | https://openalex.org/C153180895 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5172455906867981 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[6].display_name | Pattern recognition (psychology) |
| concepts[7].id | https://openalex.org/C2777212361 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4986581802368164 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q5127848 |
| concepts[7].display_name | Class (philosophy) |
| concepts[8].id | https://openalex.org/C97931131 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4706793427467346 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q5282087 |
| concepts[8].display_name | Discriminative model |
| concepts[9].id | https://openalex.org/C2779463800 |
| concepts[9].level | 2 |
| concepts[9].score | 0.459392786026001 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q5062222 |
| concepts[9].display_name | Center (category theory) |
| concepts[10].id | https://openalex.org/C31972630 |
| concepts[10].level | 1 |
| concepts[10].score | 0.44695717096328735 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[10].display_name | Computer vision |
| concepts[11].id | https://openalex.org/C115961682 |
| concepts[11].level | 2 |
| concepts[11].score | 0.23420953750610352 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[11].display_name | Image (mathematics) |
| concepts[12].id | https://openalex.org/C8010536 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q160398 |
| concepts[12].display_name | Crystallography |
| concepts[13].id | https://openalex.org/C41895202 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[13].display_name | Linguistics |
| concepts[14].id | https://openalex.org/C138885662 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[14].display_name | Philosophy |
| concepts[15].id | https://openalex.org/C185592680 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[15].display_name | Chemistry |
| keywords[0].id | https://openalex.org/keywords/pixel |
| keywords[0].score | 0.7299884557723999 |
| keywords[0].display_name | Pixel |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.7008612155914307 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.6596730351448059 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/segmentation |
| keywords[3].score | 0.6177319884300232 |
| keywords[3].display_name | Segmentation |
| keywords[4].id | https://openalex.org/keywords/similarity |
| keywords[4].score | 0.610255241394043 |
| keywords[4].display_name | Similarity (geometry) |
| keywords[5].id | https://openalex.org/keywords/feature |
| keywords[5].score | 0.5661628246307373 |
| keywords[5].display_name | Feature (linguistics) |
| keywords[6].id | https://openalex.org/keywords/pattern-recognition |
| keywords[6].score | 0.5172455906867981 |
| keywords[6].display_name | Pattern recognition (psychology) |
| keywords[7].id | https://openalex.org/keywords/class |
| keywords[7].score | 0.4986581802368164 |
| keywords[7].display_name | Class (philosophy) |
| keywords[8].id | https://openalex.org/keywords/discriminative-model |
| keywords[8].score | 0.4706793427467346 |
| keywords[8].display_name | Discriminative model |
| keywords[9].id | https://openalex.org/keywords/center |
| keywords[9].score | 0.459392786026001 |
| keywords[9].display_name | Center (category theory) |
| keywords[10].id | https://openalex.org/keywords/computer-vision |
| keywords[10].score | 0.44695717096328735 |
| keywords[10].display_name | Computer vision |
| keywords[11].id | https://openalex.org/keywords/image |
| keywords[11].score | 0.23420953750610352 |
| keywords[11].display_name | Image (mathematics) |
| language | en |
| locations[0].id | doi:10.1049/cit2.12245 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2898415742 |
| locations[0].source.issn | 2468-2322, 2468-6557 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2468-2322 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | CAAI Transactions on Intelligence Technology |
| locations[0].source.host_organization | https://openalex.org/P4310311714 |
| locations[0].source.host_organization_name | Institution of Engineering and Technology |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310311714 |
| locations[0].source.host_organization_lineage_names | Institution of Engineering and Technology |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1049/cit2.12245 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | CAAI Transactions on Intelligence Technology |
| locations[0].landing_page_url | https://doi.org/10.1049/cit2.12245 |
| locations[1].id | pmh:oai:doaj.org/article:4506b2ad08934b96a875adb82d768154 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | CAAI Transactions on Intelligence Technology, Vol 9, Iss 1, Pp 87-100 (2024) |
| locations[1].landing_page_url | https://doaj.org/article/4506b2ad08934b96a875adb82d768154 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5102018773 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-4716-856X |
| authorships[0].author.display_name | Dongyue Wu |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I47720641 |
| authorships[0].affiliations[0].raw_affiliation_string | National Key Laboratory of Science and Technology on Multispectral Information Processing, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, China |
| authorships[0].institutions[0].id | https://openalex.org/I47720641 |
| authorships[0].institutions[0].ror | https://ror.org/00p991c53 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I47720641 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Huazhong University of Science and Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Dongyue Wu |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | National Key Laboratory of Science and Technology on Multispectral Information Processing, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, China |
| authorships[1].author.id | https://openalex.org/A5043846573 |
| authorships[1].author.orcid | https://orcid.org/0009-0002-5286-8023 |
| authorships[1].author.display_name | Zilin Guo |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I47720641 |
| authorships[1].affiliations[0].raw_affiliation_string | National Key Laboratory of Science and Technology on Multispectral Information Processing, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, China |
| authorships[1].institutions[0].id | https://openalex.org/I47720641 |
| authorships[1].institutions[0].ror | https://ror.org/00p991c53 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I47720641 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Huazhong University of Science and Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Zilin Guo |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | National Key Laboratory of Science and Technology on Multispectral Information Processing, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, China |
| authorships[2].author.id | https://openalex.org/A5085471636 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Aoyan Li |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I47720641 |
| authorships[2].affiliations[0].raw_affiliation_string | National Key Laboratory of Science and Technology on Multispectral Information Processing, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, China |
| authorships[2].institutions[0].id | https://openalex.org/I47720641 |
| authorships[2].institutions[0].ror | https://ror.org/00p991c53 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I47720641 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Huazhong University of Science and Technology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Aoyan Li |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | National Key Laboratory of Science and Technology on Multispectral Information Processing, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, China |
| authorships[3].author.id | https://openalex.org/A5013651586 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-4488-4157 |
| authorships[3].author.display_name | Changqian Yu |
| authorships[3].affiliations[0].raw_affiliation_string | Meituan Inc., Beijing, China |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Changqian Yu |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Meituan Inc., Beijing, China |
| authorships[4].author.id | https://openalex.org/A5112116313 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Nong Sang |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I47720641 |
| authorships[4].affiliations[0].raw_affiliation_string | National Key Laboratory of Science and Technology on Multispectral Information Processing, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, China |
| authorships[4].institutions[0].id | https://openalex.org/I47720641 |
| authorships[4].institutions[0].ror | https://ror.org/00p991c53 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I47720641 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Huazhong University of Science and Technology |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Nong Sang |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | National Key Laboratory of Science and Technology on Multispectral Information Processing, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, China |
| authorships[5].author.id | https://openalex.org/A5035295689 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-2736-3920 |
| authorships[5].author.display_name | Changxin Gao |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I47720641 |
| authorships[5].affiliations[0].raw_affiliation_string | National Key Laboratory of Science and Technology on Multispectral Information Processing, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, China |
| authorships[5].institutions[0].id | https://openalex.org/I47720641 |
| authorships[5].institutions[0].ror | https://ror.org/00p991c53 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I47720641 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Huazhong University of Science and Technology |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Changxin Gao |
| authorships[5].is_corresponding | True |
| authorships[5].raw_affiliation_strings | National Key Laboratory of Science and Technology on Multispectral Information Processing, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1049/cit2.12245 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Semantic segmentation via pixel‐to‐center similarity calculation |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10036 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9997000098228455 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Advanced Neural Network Applications |
| related_works | https://openalex.org/W2965546495, https://openalex.org/W4389116644, https://openalex.org/W2153315159, https://openalex.org/W3103844505, https://openalex.org/W259157601, https://openalex.org/W4205463238, https://openalex.org/W2761785940, https://openalex.org/W2110523656, https://openalex.org/W1482209366, https://openalex.org/W2521627374 |
| cited_by_count | 4 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1049/cit2.12245 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2898415742 |
| best_oa_location.source.issn | 2468-2322, 2468-6557 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2468-2322 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | CAAI Transactions on Intelligence Technology |
| best_oa_location.source.host_organization | https://openalex.org/P4310311714 |
| best_oa_location.source.host_organization_name | Institution of Engineering and Technology |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310311714 |
| best_oa_location.source.host_organization_lineage_names | Institution of Engineering and Technology |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1049/cit2.12245 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | CAAI Transactions on Intelligence Technology |
| best_oa_location.landing_page_url | https://doi.org/10.1049/cit2.12245 |
| primary_location.id | doi:10.1049/cit2.12245 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2898415742 |
| primary_location.source.issn | 2468-2322, 2468-6557 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2468-2322 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | CAAI Transactions on Intelligence Technology |
| primary_location.source.host_organization | https://openalex.org/P4310311714 |
| primary_location.source.host_organization_name | Institution of Engineering and Technology |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310311714 |
| primary_location.source.host_organization_lineage_names | Institution of Engineering and Technology |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1049/cit2.12245 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | CAAI Transactions on Intelligence Technology |
| primary_location.landing_page_url | https://doi.org/10.1049/cit2.12245 |
| publication_date | 2023-06-07 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W2163605009, https://openalex.org/W2963446712, https://openalex.org/W1903029394, https://openalex.org/W2601564443, https://openalex.org/W2560023338, https://openalex.org/W2955058313, https://openalex.org/W2895340641, https://openalex.org/W3047385447, https://openalex.org/W2963091558, https://openalex.org/W2963881378, https://openalex.org/W1901129140, https://openalex.org/W2563705555, https://openalex.org/W2412782625, https://openalex.org/W2963108253, https://openalex.org/W2964309882, https://openalex.org/W2799213142, https://openalex.org/W4283515839, https://openalex.org/W2965391153, https://openalex.org/W2981689412, https://openalex.org/W3138516171, https://openalex.org/W3170544306, https://openalex.org/W3180659539, https://openalex.org/W2955813853, https://openalex.org/W2990775046, https://openalex.org/W2962914239, https://openalex.org/W2737258237, https://openalex.org/W2125215748, https://openalex.org/W2799166040, https://openalex.org/W3035339581, https://openalex.org/W2124592697, https://openalex.org/W2194775991, https://openalex.org/W2963727650, https://openalex.org/W3108186749, https://openalex.org/W2884822772, https://openalex.org/W2117539524, https://openalex.org/W3213165621, https://openalex.org/W4301409532, https://openalex.org/W3211490618 |
| referenced_works_count | 38 |
| abstract_inverted_index.a | 93, 155 |
| abstract_inverted_index.as | 122, 241 |
| abstract_inverted_index.be | 46, 72, 120 |
| abstract_inverted_index.by | 166 |
| abstract_inverted_index.in | 10, 52, 67, 75, 83, 114, 137 |
| abstract_inverted_index.is | 215 |
| abstract_inverted_index.of | 14, 95, 105, 125 |
| abstract_inverted_index.on | 172, 196, 225 |
| abstract_inverted_index.to | 19, 49, 79, 134, 161, 191, 217 |
| abstract_inverted_index.(CD | 213 |
| abstract_inverted_index.(i) | 37 |
| abstract_inverted_index.CCS | 183, 234 |
| abstract_inverted_index.The | 38, 63, 86, 182 |
| abstract_inverted_index.and | 99, 144, 175, 221, 229 |
| abstract_inverted_index.can | 119 |
| abstract_inverted_index.has | 6 |
| abstract_inverted_index.its | 110 |
| abstract_inverted_index.may | 45 |
| abstract_inverted_index.our | 249 |
| abstract_inverted_index.the | 2, 25, 50, 54, 68, 76, 106, 115, 123, 126, 130, 138, 145, 152, 163, 177, 186, 201, 226, 233, 237, 242, 254 |
| abstract_inverted_index.two | 34 |
| abstract_inverted_index.(ii) | 62 |
| abstract_inverted_index.Each | 102 |
| abstract_inverted_index.Loss | 212 |
| abstract_inverted_index.been | 17 |
| abstract_inverted_index.both | 219 |
| abstract_inverted_index.each | 84, 173, 197 |
| abstract_inverted_index.from | 33, 59, 92 |
| abstract_inverted_index.have | 16 |
| abstract_inverted_index.head | 108 |
| abstract_inverted_index.lots | 13 |
| abstract_inverted_index.same | 69 |
| abstract_inverted_index.that | 28, 248 |
| abstract_inverted_index.this | 149 |
| abstract_inverted_index.(CCS) | 159 |
| abstract_inverted_index.Class | 156, 188, 210 |
| abstract_inverted_index.Loss) | 214 |
| abstract_inverted_index.Since | 1 |
| abstract_inverted_index.Thus, | 129 |
| abstract_inverted_index.Under | 148 |
| abstract_inverted_index.adapt | 200 |
| abstract_inverted_index.based | 224 |
| abstract_inverted_index.class | 100, 113, 127, 146, 169, 180, 193 |
| abstract_inverted_index.could | 71 |
| abstract_inverted_index.final | 139 |
| abstract_inverted_index.first | 88 |
| abstract_inverted_index.fully | 3 |
| abstract_inverted_index.great | 8 |
| abstract_inverted_index.large | 202 |
| abstract_inverted_index.layer | 160, 184, 235 |
| abstract_inverted_index.model | 250 |
| abstract_inverted_index.novel | 150 |
| abstract_inverted_index.pixel | 22 |
| abstract_inverted_index.scene | 70 |
| abstract_inverted_index.space | 141 |
| abstract_inverted_index.still | 31 |
| abstract_inverted_index.view, | 151 |
| abstract_inverted_index.which | 118, 199 |
| abstract_inverted_index.whole | 116 |
| abstract_inverted_index.works | 15 |
| abstract_inverted_index.Center | 157, 189 |
| abstract_inverted_index.Module | 190 |
| abstract_inverted_index.large, | 47 |
| abstract_inverted_index.pixels | 58, 98, 143 |
| abstract_inverted_index.scene, | 198 |
| abstract_inverted_index.scene. | 85 |
| abstract_inverted_index.scenes | 44, 174 |
| abstract_inverted_index.small, | 73 |
| abstract_inverted_index.suffer | 32 |
| abstract_inverted_index.vector | 104 |
| abstract_inverted_index.weight | 103 |
| abstract_inverted_index.address | 162 |
| abstract_inverted_index.against | 253 |
| abstract_inverted_index.amounts | 133 |
| abstract_inverted_index.authors | 26, 87, 153 |
| abstract_inverted_index.between | 42, 56, 97, 142, 179, 205 |
| abstract_inverted_index.center. | 128 |
| abstract_inverted_index.centers | 170, 194 |
| abstract_inverted_index.classes | 82 |
| abstract_inverted_index.control | 218 |
| abstract_inverted_index.extract | 20 |
| abstract_inverted_index.feature | 40, 65, 140 |
| abstract_inverted_index.leading | 48 |
| abstract_inverted_index.limited | 77 |
| abstract_inverted_index.methods | 30 |
| abstract_inverted_index.network | 5 |
| abstract_inverted_index.observe | 27 |
| abstract_inverted_index.outputs | 236 |
| abstract_inverted_index.propose | 154 |
| abstract_inverted_index.rethink | 89 |
| abstract_inverted_index.scenes. | 207 |
| abstract_inverted_index.scenes; | 61 |
| abstract_inverted_index.success | 9 |
| abstract_inverted_index.typical | 35 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Adaptive | 187 |
| abstract_inverted_index.Distance | 211 |
| abstract_inverted_index.Finally, | 232 |
| abstract_inverted_index.However, | 24 |
| abstract_inverted_index.achieved | 7 |
| abstract_inverted_index.adaptive | 168 |
| abstract_inverted_index.centers. | 101, 147, 181 |
| abstract_inverted_index.dataset, | 117 |
| abstract_inverted_index.designed | 209 |
| abstract_inverted_index.existing | 29 |
| abstract_inverted_index.generate | 192 |
| abstract_inverted_index.methods. | 256 |
| abstract_inverted_index.performs | 251 |
| abstract_inverted_index.proposed | 18 |
| abstract_inverted_index.regarded | 121 |
| abstract_inverted_index.semantic | 11, 90, 112 |
| abstract_inverted_index.utilises | 185 |
| abstract_inverted_index.Extensive | 245 |
| abstract_inverted_index.Specially | 208 |
| abstract_inverted_index.computing | 135 |
| abstract_inverted_index.different | 43, 60, 81, 206 |
| abstract_inverted_index.distances | 223 |
| abstract_inverted_index.embedding | 124 |
| abstract_inverted_index.predicted | 227 |
| abstract_inverted_index.processed | 238 |
| abstract_inverted_index.resulting | 74 |
| abstract_inverted_index.variation | 41, 204 |
| abstract_inverted_index.Similarity | 158 |
| abstract_inverted_index.challenges | 165 |
| abstract_inverted_index.difficulty | 51 |
| abstract_inverted_index.favourably | 252 |
| abstract_inverted_index.generating | 167 |
| abstract_inverted_index.introduced | 216 |
| abstract_inverted_index.represents | 109 |
| abstract_inverted_index.similarity | 96, 136, 240 |
| abstract_inverted_index.challenges: | 36 |
| abstract_inverted_index.conditioned | 171, 195 |
| abstract_inverted_index.consistency | 55 |
| abstract_inverted_index.demonstrate | 247 |
| abstract_inverted_index.distinction | 66 |
| abstract_inverted_index.distinguish | 80 |
| abstract_inverted_index.experiments | 246 |
| abstract_inverted_index.maintaining | 53 |
| abstract_inverted_index.performance | 78 |
| abstract_inverted_index.perspective | 94 |
| abstract_inverted_index.prediction. | 244 |
| abstract_inverted_index.similarity. | 231 |
| abstract_inverted_index.supervising | 176 |
| abstract_inverted_index.pixel‐wise | 131 |
| abstract_inverted_index.same‐class | 57 |
| abstract_inverted_index.segmentation | 91, 107, 243 |
| abstract_inverted_index.similarities | 178 |
| abstract_inverted_index.convolutional | 4 |
| abstract_inverted_index.corresponding | 111 |
| abstract_inverted_index.inter‐class | 64, 220 |
| abstract_inverted_index.intra‐class | 39, 203, 222 |
| abstract_inverted_index.segmentation, | 12 |
| abstract_inverted_index.classification | 132 |
| abstract_inverted_index.discriminative | 21 |
| abstract_inverted_index.representations. | 23 |
| abstract_inverted_index.above‐mentioned | 164 |
| abstract_inverted_index.pixel‐to‐center | 230, 239 |
| abstract_inverted_index.center‐to‐center | 228 |
| abstract_inverted_index.state‐of‐the‐art | 255 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 89 |
| corresponding_author_ids | https://openalex.org/A5035295689 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| corresponding_institution_ids | https://openalex.org/I47720641 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/10 |
| sustainable_development_goals[0].score | 0.7799999713897705 |
| sustainable_development_goals[0].display_name | Reduced inequalities |
| citation_normalized_percentile.value | 0.67743594 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |