Semantic Word Clouds with Background Corpus Normalization and t-distributed Stochastic Neighbor Embedding Article Swipe
YOU?
·
· 2017
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.1708.03569
Many word clouds provide no semantics to the word placement, but use a random layout optimized solely for aesthetic purposes. We propose a novel approach to model word significance and word affinity within a document, and in comparison to a large background corpus. We demonstrate its usefulness for generating more meaningful word clouds as a visual summary of a given document. We then select keywords based on their significance and construct the word cloud based on the derived affinity. Based on a modified t-distributed stochastic neighbor embedding (t-SNE), we generate a semantic word placement. For words that cooccur significantly, we include edges, and cluster the words according to their cooccurrence. For this we designed a scalable and memory-efficient sketch-based approach usable on commodity hardware to aggregate the required corpus statistics needed for normalization, and for identifying keywords as well as significant cooccurences. We empirically validate our approch using a large Wikipedia corpus.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/1708.03569
- https://arxiv.org/pdf/1708.03569
- OA Status
- green
- Cited By
- 16
- References
- 36
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2745765137
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2745765137Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.1708.03569Digital Object Identifier
- Title
-
Semantic Word Clouds with Background Corpus Normalization and t-distributed Stochastic Neighbor EmbeddingWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2017Year of publication
- Publication date
-
2017-08-11Full publication date if available
- Authors
-
Erich Schubert, Andreas Spitz, M. Weiler, Johanna Geiß, Michael GertzList of authors in order
- Landing page
-
https://arxiv.org/abs/1708.03569Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/1708.03569Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/1708.03569Direct OA link when available
- Concepts
-
Computer science, Natural language processing, Normalization (sociology), Artificial intelligence, Distributional semantics, Word (group theory), Word embedding, Tag cloud, Scalability, Treebank, Semantics (computer science), Latent Dirichlet allocation, Embedding, Lexicon, Sketch, Topic model, Semantic similarity, Algorithm, Parsing, Visualization, Linguistics, Database, Anthropology, Sociology, Philosophy, Programming languageTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
16Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 2, 2023: 2, 2022: 2, 2021: 3, 2020: 1Per-year citation counts (last 5 years)
- References (count)
-
36Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2745765137 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.1708.03569 |
| ids.doi | https://doi.org/10.48550/arxiv.1708.03569 |
| ids.mag | 2745765137 |
| ids.openalex | https://openalex.org/W2745765137 |
| fwci | |
| type | preprint |
| title | Semantic Word Clouds with Background Corpus Normalization and t-distributed Stochastic Neighbor Embedding |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T13083 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9995999932289124 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Advanced Text Analysis Techniques |
| topics[1].id | https://openalex.org/T11439 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9991000294685364 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Video Analysis and Summarization |
| topics[2].id | https://openalex.org/T10028 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9979000091552734 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Topic Modeling |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8081802129745483 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C204321447 |
| concepts[1].level | 1 |
| concepts[1].score | 0.6943038702011108 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[1].display_name | Natural language processing |
| concepts[2].id | https://openalex.org/C136886441 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6387096047401428 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q926129 |
| concepts[2].display_name | Normalization (sociology) |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.6205010414123535 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C2778828372 |
| concepts[4].level | 3 |
| concepts[4].score | 0.6010231375694275 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q5283209 |
| concepts[4].display_name | Distributional semantics |
| concepts[5].id | https://openalex.org/C90805587 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5983692407608032 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q10944557 |
| concepts[5].display_name | Word (group theory) |
| concepts[6].id | https://openalex.org/C2777462759 |
| concepts[6].level | 3 |
| concepts[6].score | 0.5860447287559509 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q18395344 |
| concepts[6].display_name | Word embedding |
| concepts[7].id | https://openalex.org/C26983874 |
| concepts[7].level | 3 |
| concepts[7].score | 0.50254225730896 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q263864 |
| concepts[7].display_name | Tag cloud |
| concepts[8].id | https://openalex.org/C48044578 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4865628778934479 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q727490 |
| concepts[8].display_name | Scalability |
| concepts[9].id | https://openalex.org/C206134035 |
| concepts[9].level | 3 |
| concepts[9].score | 0.47964245080947876 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q811525 |
| concepts[9].display_name | Treebank |
| concepts[10].id | https://openalex.org/C184337299 |
| concepts[10].level | 2 |
| concepts[10].score | 0.44759753346443176 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1437428 |
| concepts[10].display_name | Semantics (computer science) |
| concepts[11].id | https://openalex.org/C500882744 |
| concepts[11].level | 3 |
| concepts[11].score | 0.4466443955898285 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q269236 |
| concepts[11].display_name | Latent Dirichlet allocation |
| concepts[12].id | https://openalex.org/C41608201 |
| concepts[12].level | 2 |
| concepts[12].score | 0.4381091892719269 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q980509 |
| concepts[12].display_name | Embedding |
| concepts[13].id | https://openalex.org/C2778121359 |
| concepts[13].level | 2 |
| concepts[13].score | 0.4352869987487793 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q8096 |
| concepts[13].display_name | Lexicon |
| concepts[14].id | https://openalex.org/C2779231336 |
| concepts[14].level | 2 |
| concepts[14].score | 0.422041654586792 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q7534724 |
| concepts[14].display_name | Sketch |
| concepts[15].id | https://openalex.org/C171686336 |
| concepts[15].level | 2 |
| concepts[15].score | 0.26303017139434814 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q3532085 |
| concepts[15].display_name | Topic model |
| concepts[16].id | https://openalex.org/C130318100 |
| concepts[16].level | 2 |
| concepts[16].score | 0.22035881876945496 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q2268914 |
| concepts[16].display_name | Semantic similarity |
| concepts[17].id | https://openalex.org/C11413529 |
| concepts[17].level | 1 |
| concepts[17].score | 0.1480449140071869 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[17].display_name | Algorithm |
| concepts[18].id | https://openalex.org/C186644900 |
| concepts[18].level | 2 |
| concepts[18].score | 0.11918589472770691 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q194152 |
| concepts[18].display_name | Parsing |
| concepts[19].id | https://openalex.org/C36464697 |
| concepts[19].level | 2 |
| concepts[19].score | 0.11789584159851074 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q451553 |
| concepts[19].display_name | Visualization |
| concepts[20].id | https://openalex.org/C41895202 |
| concepts[20].level | 1 |
| concepts[20].score | 0.10943341255187988 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[20].display_name | Linguistics |
| concepts[21].id | https://openalex.org/C77088390 |
| concepts[21].level | 1 |
| concepts[21].score | 0.08014187216758728 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q8513 |
| concepts[21].display_name | Database |
| concepts[22].id | https://openalex.org/C19165224 |
| concepts[22].level | 1 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q23404 |
| concepts[22].display_name | Anthropology |
| concepts[23].id | https://openalex.org/C144024400 |
| concepts[23].level | 0 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q21201 |
| concepts[23].display_name | Sociology |
| concepts[24].id | https://openalex.org/C138885662 |
| concepts[24].level | 0 |
| concepts[24].score | 0.0 |
| concepts[24].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[24].display_name | Philosophy |
| concepts[25].id | https://openalex.org/C199360897 |
| concepts[25].level | 1 |
| concepts[25].score | 0.0 |
| concepts[25].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[25].display_name | Programming language |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.8081802129745483 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/natural-language-processing |
| keywords[1].score | 0.6943038702011108 |
| keywords[1].display_name | Natural language processing |
| keywords[2].id | https://openalex.org/keywords/normalization |
| keywords[2].score | 0.6387096047401428 |
| keywords[2].display_name | Normalization (sociology) |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.6205010414123535 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/distributional-semantics |
| keywords[4].score | 0.6010231375694275 |
| keywords[4].display_name | Distributional semantics |
| keywords[5].id | https://openalex.org/keywords/word |
| keywords[5].score | 0.5983692407608032 |
| keywords[5].display_name | Word (group theory) |
| keywords[6].id | https://openalex.org/keywords/word-embedding |
| keywords[6].score | 0.5860447287559509 |
| keywords[6].display_name | Word embedding |
| keywords[7].id | https://openalex.org/keywords/tag-cloud |
| keywords[7].score | 0.50254225730896 |
| keywords[7].display_name | Tag cloud |
| keywords[8].id | https://openalex.org/keywords/scalability |
| keywords[8].score | 0.4865628778934479 |
| keywords[8].display_name | Scalability |
| keywords[9].id | https://openalex.org/keywords/treebank |
| keywords[9].score | 0.47964245080947876 |
| keywords[9].display_name | Treebank |
| keywords[10].id | https://openalex.org/keywords/semantics |
| keywords[10].score | 0.44759753346443176 |
| keywords[10].display_name | Semantics (computer science) |
| keywords[11].id | https://openalex.org/keywords/latent-dirichlet-allocation |
| keywords[11].score | 0.4466443955898285 |
| keywords[11].display_name | Latent Dirichlet allocation |
| keywords[12].id | https://openalex.org/keywords/embedding |
| keywords[12].score | 0.4381091892719269 |
| keywords[12].display_name | Embedding |
| keywords[13].id | https://openalex.org/keywords/lexicon |
| keywords[13].score | 0.4352869987487793 |
| keywords[13].display_name | Lexicon |
| keywords[14].id | https://openalex.org/keywords/sketch |
| keywords[14].score | 0.422041654586792 |
| keywords[14].display_name | Sketch |
| keywords[15].id | https://openalex.org/keywords/topic-model |
| keywords[15].score | 0.26303017139434814 |
| keywords[15].display_name | Topic model |
| keywords[16].id | https://openalex.org/keywords/semantic-similarity |
| keywords[16].score | 0.22035881876945496 |
| keywords[16].display_name | Semantic similarity |
| keywords[17].id | https://openalex.org/keywords/algorithm |
| keywords[17].score | 0.1480449140071869 |
| keywords[17].display_name | Algorithm |
| keywords[18].id | https://openalex.org/keywords/parsing |
| keywords[18].score | 0.11918589472770691 |
| keywords[18].display_name | Parsing |
| keywords[19].id | https://openalex.org/keywords/visualization |
| keywords[19].score | 0.11789584159851074 |
| keywords[19].display_name | Visualization |
| keywords[20].id | https://openalex.org/keywords/linguistics |
| keywords[20].score | 0.10943341255187988 |
| keywords[20].display_name | Linguistics |
| keywords[21].id | https://openalex.org/keywords/database |
| keywords[21].score | 0.08014187216758728 |
| keywords[21].display_name | Database |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:1708.03569 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/1708.03569 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/1708.03569 |
| locations[1].id | doi:10.48550/arxiv.1708.03569 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.1708.03569 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5068514720 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-9143-4880 |
| authorships[0].author.display_name | Erich Schubert |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Erich Schubert |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5018128415 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-5282-6133 |
| authorships[1].author.display_name | Andreas Spitz |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Andreas Spitz |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5037250136 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-3007-3927 |
| authorships[2].author.display_name | M. Weiler |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Michael Weiler |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5083133070 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-1368-3280 |
| authorships[3].author.display_name | Johanna Geiß |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Johanna Geiß |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5061021795 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-4530-6110 |
| authorships[4].author.display_name | Michael Gertz |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Michael Gertz |
| authorships[4].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/1708.03569 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Semantic Word Clouds with Background Corpus Normalization and t-distributed Stochastic Neighbor Embedding |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T13083 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9995999932289124 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Advanced Text Analysis Techniques |
| related_works | https://openalex.org/W2996463043, https://openalex.org/W2399309132, https://openalex.org/W3173577605, https://openalex.org/W3167917202, https://openalex.org/W3005513013, https://openalex.org/W3046869600, https://openalex.org/W2806430042, https://openalex.org/W3011050683, https://openalex.org/W2594230509, https://openalex.org/W3022552813 |
| cited_by_count | 16 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 2 |
| counts_by_year[2].year | 2022 |
| counts_by_year[2].cited_by_count | 2 |
| counts_by_year[3].year | 2021 |
| counts_by_year[3].cited_by_count | 3 |
| counts_by_year[4].year | 2020 |
| counts_by_year[4].cited_by_count | 1 |
| counts_by_year[5].year | 2019 |
| counts_by_year[5].cited_by_count | 4 |
| counts_by_year[6].year | 2018 |
| counts_by_year[6].cited_by_count | 2 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:1708.03569 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/1708.03569 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/1708.03569 |
| primary_location.id | pmh:oai:arXiv.org:1708.03569 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/1708.03569 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/1708.03569 |
| publication_date | 2017-08-11 |
| publication_year | 2017 |
| referenced_works | https://openalex.org/W2115108919, https://openalex.org/W3216726562, https://openalex.org/W2169717084, https://openalex.org/W2016001305, https://openalex.org/W2082388593, https://openalex.org/W99538960, https://openalex.org/W2293385817, https://openalex.org/W2730457510, https://openalex.org/W2123442489, https://openalex.org/W2163803148, https://openalex.org/W2575426348, https://openalex.org/W2114461832, https://openalex.org/W2007995029, https://openalex.org/W2295555357, https://openalex.org/W2337742504, https://openalex.org/W2187089797, https://openalex.org/W2250539671, https://openalex.org/W2105313627, https://openalex.org/W2068535610, https://openalex.org/W2950577311, https://openalex.org/W2265830978, https://openalex.org/W2473185522, https://openalex.org/W1593045043, https://openalex.org/W1993032259, https://openalex.org/W32482440, https://openalex.org/W2141558464, https://openalex.org/W1875842236, https://openalex.org/W2006277071, https://openalex.org/W2119828234, https://openalex.org/W2122580360, https://openalex.org/W2157444450, https://openalex.org/W2016268421, https://openalex.org/W2229908198, https://openalex.org/W2167482691, https://openalex.org/W2080234606, https://openalex.org/W2015517276 |
| referenced_works_count | 36 |
| abstract_inverted_index.a | 12, 22, 33, 39, 54, 58, 81, 90, 114, 148 |
| abstract_inverted_index.We | 20, 43, 61, 142 |
| abstract_inverted_index.as | 53, 137, 139 |
| abstract_inverted_index.in | 36 |
| abstract_inverted_index.no | 4 |
| abstract_inverted_index.of | 57 |
| abstract_inverted_index.on | 66, 75, 80, 121 |
| abstract_inverted_index.to | 6, 25, 38, 107, 124 |
| abstract_inverted_index.we | 88, 99, 112 |
| abstract_inverted_index.For | 94, 110 |
| abstract_inverted_index.and | 29, 35, 69, 102, 116, 133 |
| abstract_inverted_index.but | 10 |
| abstract_inverted_index.for | 17, 47, 131, 134 |
| abstract_inverted_index.its | 45 |
| abstract_inverted_index.our | 145 |
| abstract_inverted_index.the | 7, 71, 76, 104, 126 |
| abstract_inverted_index.use | 11 |
| abstract_inverted_index.Many | 0 |
| abstract_inverted_index.more | 49 |
| abstract_inverted_index.that | 96 |
| abstract_inverted_index.then | 62 |
| abstract_inverted_index.this | 111 |
| abstract_inverted_index.well | 138 |
| abstract_inverted_index.word | 1, 8, 27, 30, 51, 72, 92 |
| abstract_inverted_index.Based | 79 |
| abstract_inverted_index.based | 65, 74 |
| abstract_inverted_index.cloud | 73 |
| abstract_inverted_index.given | 59 |
| abstract_inverted_index.large | 40, 149 |
| abstract_inverted_index.model | 26 |
| abstract_inverted_index.novel | 23 |
| abstract_inverted_index.their | 67, 108 |
| abstract_inverted_index.using | 147 |
| abstract_inverted_index.words | 95, 105 |
| abstract_inverted_index.clouds | 2, 52 |
| abstract_inverted_index.corpus | 128 |
| abstract_inverted_index.edges, | 101 |
| abstract_inverted_index.layout | 14 |
| abstract_inverted_index.needed | 130 |
| abstract_inverted_index.random | 13 |
| abstract_inverted_index.select | 63 |
| abstract_inverted_index.solely | 16 |
| abstract_inverted_index.usable | 120 |
| abstract_inverted_index.visual | 55 |
| abstract_inverted_index.within | 32 |
| abstract_inverted_index.approch | 146 |
| abstract_inverted_index.cluster | 103 |
| abstract_inverted_index.cooccur | 97 |
| abstract_inverted_index.corpus. | 42, 151 |
| abstract_inverted_index.derived | 77 |
| abstract_inverted_index.include | 100 |
| abstract_inverted_index.propose | 21 |
| abstract_inverted_index.provide | 3 |
| abstract_inverted_index.summary | 56 |
| abstract_inverted_index.(t-SNE), | 87 |
| abstract_inverted_index.affinity | 31 |
| abstract_inverted_index.approach | 24, 119 |
| abstract_inverted_index.designed | 113 |
| abstract_inverted_index.generate | 89 |
| abstract_inverted_index.hardware | 123 |
| abstract_inverted_index.keywords | 64, 136 |
| abstract_inverted_index.modified | 82 |
| abstract_inverted_index.neighbor | 85 |
| abstract_inverted_index.required | 127 |
| abstract_inverted_index.scalable | 115 |
| abstract_inverted_index.semantic | 91 |
| abstract_inverted_index.validate | 144 |
| abstract_inverted_index.Wikipedia | 150 |
| abstract_inverted_index.according | 106 |
| abstract_inverted_index.aesthetic | 18 |
| abstract_inverted_index.affinity. | 78 |
| abstract_inverted_index.aggregate | 125 |
| abstract_inverted_index.commodity | 122 |
| abstract_inverted_index.construct | 70 |
| abstract_inverted_index.document, | 34 |
| abstract_inverted_index.document. | 60 |
| abstract_inverted_index.embedding | 86 |
| abstract_inverted_index.optimized | 15 |
| abstract_inverted_index.purposes. | 19 |
| abstract_inverted_index.semantics | 5 |
| abstract_inverted_index.background | 41 |
| abstract_inverted_index.comparison | 37 |
| abstract_inverted_index.generating | 48 |
| abstract_inverted_index.meaningful | 50 |
| abstract_inverted_index.placement, | 9 |
| abstract_inverted_index.placement. | 93 |
| abstract_inverted_index.statistics | 129 |
| abstract_inverted_index.stochastic | 84 |
| abstract_inverted_index.usefulness | 46 |
| abstract_inverted_index.demonstrate | 44 |
| abstract_inverted_index.empirically | 143 |
| abstract_inverted_index.identifying | 135 |
| abstract_inverted_index.significant | 140 |
| abstract_inverted_index.significance | 28, 68 |
| abstract_inverted_index.sketch-based | 118 |
| abstract_inverted_index.cooccurences. | 141 |
| abstract_inverted_index.cooccurrence. | 109 |
| abstract_inverted_index.t-distributed | 83 |
| abstract_inverted_index.normalization, | 132 |
| abstract_inverted_index.significantly, | 98 |
| abstract_inverted_index.memory-efficient | 117 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/4 |
| sustainable_development_goals[0].score | 0.6499999761581421 |
| sustainable_development_goals[0].display_name | Quality Education |
| citation_normalized_percentile |