Semi-Overcomplete Convolutional Auto-Encoder Embedding as Shape Priors for Deep Vessel Segmentation Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.1109/icip46576.2022.9897188
The extraction of blood vessels has recently experienced a widespread\ninterest in medical image analysis. Automatic vessel segmentation is highly\ndesirable to guide clinicians in computer-assisted diagnosis, therapy or\nsurgical planning. Despite a good ability to extract large anatomical\nstructures, the capacity of U-Net inspired architectures to automatically\ndelineate vascular systems remains a major issue, especially given the scarcity\nof existing datasets. In this paper, we present a novel approach that\nintegrates into deep segmentation shape priors from a Semi-Overcomplete\nConvolutional Auto-Encoder (S-OCAE) embedding. Compared to standard\nConvolutional Auto-Encoders (CAE), it exploits an over-complete branch that\nprojects data onto higher dimensions to better characterize tiny structures.\nExperiments on retinal and liver vessel extraction, respectively performed on\npublicly-available DRIVE and 3D-IRCADb datasets, highlight the effectiveness of\nour method compared to U-Net trained without and with shape priors from a\ntraditional CAE.\n
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/icip46576.2022.9897188
- OA Status
- green
- Cited By
- 5
- References
- 22
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4283647060
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4283647060Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/icip46576.2022.9897188Digital Object Identifier
- Title
-
Semi-Overcomplete Convolutional Auto-Encoder Embedding as Shape Priors for Deep Vessel SegmentationWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-10-16Full publication date if available
- Authors
-
A. Sadikine, Bogdan Badic, J.-P. Tasu, Vincent Noblet, Dimitris Visvikis, Pierre-Henri ConzeList of authors in order
- Landing page
-
https://doi.org/10.1109/icip46576.2022.9897188Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2409.13001Direct OA link when available
- Concepts
-
Prior probability, Artificial intelligence, Computer science, Segmentation, Embedding, Autoencoder, Pattern recognition (psychology), Encoder, Deep learning, Image segmentation, Exploit, Computer vision, Bayesian probability, Computer security, Operating systemTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
5Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 3, 2023: 2Per-year citation counts (last 5 years)
- References (count)
-
22Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4283647060 |
|---|---|
| doi | https://doi.org/10.1109/icip46576.2022.9897188 |
| ids.doi | https://doi.org/10.1109/icip46576.2022.9897188 |
| ids.openalex | https://openalex.org/W4283647060 |
| fwci | 1.27283304 |
| type | article |
| title | Semi-Overcomplete Convolutional Auto-Encoder Embedding as Shape Priors for Deep Vessel Segmentation |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 590 |
| biblio.first_page | 586 |
| topics[0].id | https://openalex.org/T11438 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2741 |
| topics[0].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[0].display_name | Retinal Imaging and Analysis |
| topics[1].id | https://openalex.org/T12874 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9948999881744385 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Digital Imaging for Blood Diseases |
| topics[2].id | https://openalex.org/T10052 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.994700014591217 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Medical Image Segmentation Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C177769412 |
| concepts[0].level | 3 |
| concepts[0].score | 0.7749778032302856 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q278090 |
| concepts[0].display_name | Prior probability |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.7473072409629822 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.7240387201309204 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C89600930 |
| concepts[3].level | 2 |
| concepts[3].score | 0.68244868516922 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[3].display_name | Segmentation |
| concepts[4].id | https://openalex.org/C41608201 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6486969590187073 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q980509 |
| concepts[4].display_name | Embedding |
| concepts[5].id | https://openalex.org/C101738243 |
| concepts[5].level | 3 |
| concepts[5].score | 0.6241928339004517 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q786435 |
| concepts[5].display_name | Autoencoder |
| concepts[6].id | https://openalex.org/C153180895 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5472500324249268 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[6].display_name | Pattern recognition (psychology) |
| concepts[7].id | https://openalex.org/C118505674 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5342233777046204 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q42586063 |
| concepts[7].display_name | Encoder |
| concepts[8].id | https://openalex.org/C108583219 |
| concepts[8].level | 2 |
| concepts[8].score | 0.5120999813079834 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[8].display_name | Deep learning |
| concepts[9].id | https://openalex.org/C124504099 |
| concepts[9].level | 3 |
| concepts[9].score | 0.5056350231170654 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q56933 |
| concepts[9].display_name | Image segmentation |
| concepts[10].id | https://openalex.org/C165696696 |
| concepts[10].level | 2 |
| concepts[10].score | 0.48077601194381714 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11287 |
| concepts[10].display_name | Exploit |
| concepts[11].id | https://openalex.org/C31972630 |
| concepts[11].level | 1 |
| concepts[11].score | 0.4064312279224396 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[11].display_name | Computer vision |
| concepts[12].id | https://openalex.org/C107673813 |
| concepts[12].level | 2 |
| concepts[12].score | 0.15576034784317017 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q812534 |
| concepts[12].display_name | Bayesian probability |
| concepts[13].id | https://openalex.org/C38652104 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q3510521 |
| concepts[13].display_name | Computer security |
| concepts[14].id | https://openalex.org/C111919701 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[14].display_name | Operating system |
| keywords[0].id | https://openalex.org/keywords/prior-probability |
| keywords[0].score | 0.7749778032302856 |
| keywords[0].display_name | Prior probability |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.7473072409629822 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.7240387201309204 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/segmentation |
| keywords[3].score | 0.68244868516922 |
| keywords[3].display_name | Segmentation |
| keywords[4].id | https://openalex.org/keywords/embedding |
| keywords[4].score | 0.6486969590187073 |
| keywords[4].display_name | Embedding |
| keywords[5].id | https://openalex.org/keywords/autoencoder |
| keywords[5].score | 0.6241928339004517 |
| keywords[5].display_name | Autoencoder |
| keywords[6].id | https://openalex.org/keywords/pattern-recognition |
| keywords[6].score | 0.5472500324249268 |
| keywords[6].display_name | Pattern recognition (psychology) |
| keywords[7].id | https://openalex.org/keywords/encoder |
| keywords[7].score | 0.5342233777046204 |
| keywords[7].display_name | Encoder |
| keywords[8].id | https://openalex.org/keywords/deep-learning |
| keywords[8].score | 0.5120999813079834 |
| keywords[8].display_name | Deep learning |
| keywords[9].id | https://openalex.org/keywords/image-segmentation |
| keywords[9].score | 0.5056350231170654 |
| keywords[9].display_name | Image segmentation |
| keywords[10].id | https://openalex.org/keywords/exploit |
| keywords[10].score | 0.48077601194381714 |
| keywords[10].display_name | Exploit |
| keywords[11].id | https://openalex.org/keywords/computer-vision |
| keywords[11].score | 0.4064312279224396 |
| keywords[11].display_name | Computer vision |
| keywords[12].id | https://openalex.org/keywords/bayesian-probability |
| keywords[12].score | 0.15576034784317017 |
| keywords[12].display_name | Bayesian probability |
| language | en |
| locations[0].id | doi:10.1109/icip46576.2022.9897188 |
| locations[0].is_oa | False |
| locations[0].source.id | https://openalex.org/S4363607719 |
| locations[0].source.issn | |
| locations[0].source.type | conference |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | 2022 IEEE International Conference on Image Processing (ICIP) |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | 2022 IEEE International Conference on Image Processing (ICIP) |
| locations[0].landing_page_url | https://doi.org/10.1109/icip46576.2022.9897188 |
| locations[1].id | pmh:oai:arXiv.org:2409.13001 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | https://arxiv.org/pdf/2409.13001 |
| locations[1].version | submittedVersion |
| locations[1].raw_type | text |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | http://arxiv.org/abs/2409.13001 |
| locations[2].id | pmh:oai:HAL:hal-03706629v1 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306402512 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | HAL (Le Centre pour la Communication Scientifique Directe) |
| locations[2].source.host_organization | https://openalex.org/I1294671590 |
| locations[2].source.host_organization_name | Centre National de la Recherche Scientifique |
| locations[2].source.host_organization_lineage | https://openalex.org/I1294671590 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Conference papers |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | IEEE International Conference on Image Processing, Oct 2022, Bordeaux, France. ⟨10.1109/ICIP46576.2022.9897188⟩ |
| locations[2].landing_page_url | https://imt-atlantique.hal.science/hal-03706629 |
| locations[3].id | pmh:oai:HAL:hal-04024212v1 |
| locations[3].is_oa | False |
| locations[3].source.id | https://openalex.org/S4306402512 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | HAL (Le Centre pour la Communication Scientifique Directe) |
| locations[3].source.host_organization | https://openalex.org/I1294671590 |
| locations[3].source.host_organization_name | Centre National de la Recherche Scientifique |
| locations[3].source.host_organization_lineage | https://openalex.org/I1294671590 |
| locations[3].license | |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | info:eu-repo/semantics/conferenceObject |
| locations[3].license_id | |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | 2022 IEEE International Conference on Image Processing (ICIP) |
| locations[3].landing_page_url | https://hal.science/hal-04024212 |
| indexed_in | arxiv, crossref |
| authorships[0].author.id | https://openalex.org/A5044010357 |
| authorships[0].author.orcid | https://orcid.org/0009-0001-4313-0476 |
| authorships[0].author.display_name | A. Sadikine |
| authorships[0].countries | FR |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210161065 |
| authorships[0].affiliations[0].raw_affiliation_string | Laboratoire de Traitement de l'Information Medicale |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I154526488, https://openalex.org/I4210161065 |
| authorships[0].affiliations[1].raw_affiliation_string | LaTIM,Inserm,Brest,France |
| authorships[0].institutions[0].id | https://openalex.org/I154526488 |
| authorships[0].institutions[0].ror | https://ror.org/02vjkv261 |
| authorships[0].institutions[0].type | government |
| authorships[0].institutions[0].lineage | https://openalex.org/I154526488 |
| authorships[0].institutions[0].country_code | FR |
| authorships[0].institutions[0].display_name | Inserm |
| authorships[0].institutions[1].id | https://openalex.org/I4210161065 |
| authorships[0].institutions[1].ror | https://ror.org/05mqemx33 |
| authorships[0].institutions[1].type | facility |
| authorships[0].institutions[1].lineage | https://openalex.org/I154526488, https://openalex.org/I4210105774, https://openalex.org/I4210161065 |
| authorships[0].institutions[1].country_code | FR |
| authorships[0].institutions[1].display_name | Laboratoire de Traitement de l'Information Médicale |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | A. Sadikine |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | LaTIM,Inserm,Brest,France, Laboratoire de Traitement de l'Information Medicale |
| authorships[1].author.id | https://openalex.org/A5008782194 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-4608-8960 |
| authorships[1].author.display_name | Bogdan Badic |
| authorships[1].countries | FR |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210161065 |
| authorships[1].affiliations[0].raw_affiliation_string | Laboratoire de Traitement de l'Information Medicale |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I154526488, https://openalex.org/I4210161065 |
| authorships[1].affiliations[1].raw_affiliation_string | LaTIM,Inserm,Brest,France |
| authorships[1].institutions[0].id | https://openalex.org/I154526488 |
| authorships[1].institutions[0].ror | https://ror.org/02vjkv261 |
| authorships[1].institutions[0].type | government |
| authorships[1].institutions[0].lineage | https://openalex.org/I154526488 |
| authorships[1].institutions[0].country_code | FR |
| authorships[1].institutions[0].display_name | Inserm |
| authorships[1].institutions[1].id | https://openalex.org/I4210161065 |
| authorships[1].institutions[1].ror | https://ror.org/05mqemx33 |
| authorships[1].institutions[1].type | facility |
| authorships[1].institutions[1].lineage | https://openalex.org/I154526488, https://openalex.org/I4210105774, https://openalex.org/I4210161065 |
| authorships[1].institutions[1].country_code | FR |
| authorships[1].institutions[1].display_name | Laboratoire de Traitement de l'Information Médicale |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | B. Badic |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | LaTIM,Inserm,Brest,France, Laboratoire de Traitement de l'Information Medicale |
| authorships[2].author.id | https://openalex.org/A5062019642 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | J.-P. Tasu |
| authorships[2].countries | FR |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I154526488, https://openalex.org/I4210161065 |
| authorships[2].affiliations[0].raw_affiliation_string | LaTIM,Inserm,Brest,France |
| authorships[2].institutions[0].id | https://openalex.org/I154526488 |
| authorships[2].institutions[0].ror | https://ror.org/02vjkv261 |
| authorships[2].institutions[0].type | government |
| authorships[2].institutions[0].lineage | https://openalex.org/I154526488 |
| authorships[2].institutions[0].country_code | FR |
| authorships[2].institutions[0].display_name | Inserm |
| authorships[2].institutions[1].id | https://openalex.org/I4210161065 |
| authorships[2].institutions[1].ror | https://ror.org/05mqemx33 |
| authorships[2].institutions[1].type | facility |
| authorships[2].institutions[1].lineage | https://openalex.org/I154526488, https://openalex.org/I4210105774, https://openalex.org/I4210161065 |
| authorships[2].institutions[1].country_code | FR |
| authorships[2].institutions[1].display_name | Laboratoire de Traitement de l'Information Médicale |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | J.-P. Tasu |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | LaTIM,Inserm,Brest,France |
| authorships[3].author.id | https://openalex.org/A5061495694 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-3655-3163 |
| authorships[3].author.display_name | Vincent Noblet |
| authorships[3].countries | FR |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I1294671590 |
| authorships[3].affiliations[0].raw_affiliation_string | CNRS - Centre National de la Recherche Scientifique (France) |
| authorships[3].institutions[0].id | https://openalex.org/I1294671590 |
| authorships[3].institutions[0].ror | https://ror.org/02feahw73 |
| authorships[3].institutions[0].type | government |
| authorships[3].institutions[0].lineage | https://openalex.org/I1294671590 |
| authorships[3].institutions[0].country_code | FR |
| authorships[3].institutions[0].display_name | Centre National de la Recherche Scientifique |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | V. Noblet |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | CNRS - Centre National de la Recherche Scientifique (France) |
| authorships[4].author.id | https://openalex.org/A5017138072 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-0831-3637 |
| authorships[4].author.display_name | Dimitris Visvikis |
| authorships[4].countries | FR |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I154526488, https://openalex.org/I4210161065 |
| authorships[4].affiliations[0].raw_affiliation_string | LaTIM,Inserm,Brest,France |
| authorships[4].affiliations[1].institution_ids | https://openalex.org/I4210161065 |
| authorships[4].affiliations[1].raw_affiliation_string | Laboratoire de Traitement de l'Information Medicale |
| authorships[4].institutions[0].id | https://openalex.org/I154526488 |
| authorships[4].institutions[0].ror | https://ror.org/02vjkv261 |
| authorships[4].institutions[0].type | government |
| authorships[4].institutions[0].lineage | https://openalex.org/I154526488 |
| authorships[4].institutions[0].country_code | FR |
| authorships[4].institutions[0].display_name | Inserm |
| authorships[4].institutions[1].id | https://openalex.org/I4210161065 |
| authorships[4].institutions[1].ror | https://ror.org/05mqemx33 |
| authorships[4].institutions[1].type | facility |
| authorships[4].institutions[1].lineage | https://openalex.org/I154526488, https://openalex.org/I4210105774, https://openalex.org/I4210161065 |
| authorships[4].institutions[1].country_code | FR |
| authorships[4].institutions[1].display_name | Laboratoire de Traitement de l'Information Médicale |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | D. Visvikis |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | LaTIM,Inserm,Brest,France, Laboratoire de Traitement de l'Information Medicale |
| authorships[5].author.id | https://openalex.org/A5103324658 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-2214-3654 |
| authorships[5].author.display_name | Pierre-Henri Conze |
| authorships[5].countries | FR |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I154526488, https://openalex.org/I4210161065 |
| authorships[5].affiliations[0].raw_affiliation_string | LaTIM,Inserm,Brest,France |
| authorships[5].affiliations[1].institution_ids | https://openalex.org/I4210161065 |
| authorships[5].affiliations[1].raw_affiliation_string | Laboratoire de Traitement de l'Information Medicale |
| authorships[5].institutions[0].id | https://openalex.org/I154526488 |
| authorships[5].institutions[0].ror | https://ror.org/02vjkv261 |
| authorships[5].institutions[0].type | government |
| authorships[5].institutions[0].lineage | https://openalex.org/I154526488 |
| authorships[5].institutions[0].country_code | FR |
| authorships[5].institutions[0].display_name | Inserm |
| authorships[5].institutions[1].id | https://openalex.org/I4210161065 |
| authorships[5].institutions[1].ror | https://ror.org/05mqemx33 |
| authorships[5].institutions[1].type | facility |
| authorships[5].institutions[1].lineage | https://openalex.org/I154526488, https://openalex.org/I4210105774, https://openalex.org/I4210161065 |
| authorships[5].institutions[1].country_code | FR |
| authorships[5].institutions[1].display_name | Laboratoire de Traitement de l'Information Médicale |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | P.-H. Conze |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | LaTIM,Inserm,Brest,France, Laboratoire de Traitement de l'Information Medicale |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2409.13001 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Semi-Overcomplete Convolutional Auto-Encoder Embedding as Shape Priors for Deep Vessel Segmentation |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11438 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2741 |
| primary_topic.subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| primary_topic.display_name | Retinal Imaging and Analysis |
| related_works | https://openalex.org/W3013693939, https://openalex.org/W2566616303, https://openalex.org/W2159052453, https://openalex.org/W3131327266, https://openalex.org/W2734887215, https://openalex.org/W4297051394, https://openalex.org/W2752972570, https://openalex.org/W4386815338, https://openalex.org/W2145836866, https://openalex.org/W2803255133 |
| cited_by_count | 5 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 3 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 2 |
| locations_count | 4 |
| best_oa_location.id | pmh:oai:arXiv.org:2409.13001 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2409.13001 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2409.13001 |
| primary_location.id | doi:10.1109/icip46576.2022.9897188 |
| primary_location.is_oa | False |
| primary_location.source.id | https://openalex.org/S4363607719 |
| primary_location.source.issn | |
| primary_location.source.type | conference |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | 2022 IEEE International Conference on Image Processing (ICIP) |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | 2022 IEEE International Conference on Image Processing (ICIP) |
| primary_location.landing_page_url | https://doi.org/10.1109/icip46576.2022.9897188 |
| publication_date | 2022-10-16 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W2100756624, https://openalex.org/W2106466701, https://openalex.org/W2592848770, https://openalex.org/W1901129140, https://openalex.org/W3002569343, https://openalex.org/W3162505601, https://openalex.org/W2971614929, https://openalex.org/W3212024209, https://openalex.org/W6795852651, https://openalex.org/W2947448622, https://openalex.org/W2971396433, https://openalex.org/W2620296437, https://openalex.org/W2980542531, https://openalex.org/W3127587304, https://openalex.org/W2970108562, https://openalex.org/W3092462072, https://openalex.org/W3119694480, https://openalex.org/W2302255633, https://openalex.org/W2150769593, https://openalex.org/W2999351695, https://openalex.org/W3182122449, https://openalex.org/W3161359596 |
| referenced_works_count | 22 |
| abstract_inverted_index.a | 8, 29, 47, 61, 71 |
| abstract_inverted_index.In | 56 |
| abstract_inverted_index.an | 83 |
| abstract_inverted_index.in | 10, 22 |
| abstract_inverted_index.is | 17 |
| abstract_inverted_index.it | 81 |
| abstract_inverted_index.of | 2, 38 |
| abstract_inverted_index.on | 96 |
| abstract_inverted_index.to | 19, 32, 42, 77, 91, 115 |
| abstract_inverted_index.we | 59 |
| abstract_inverted_index.The | 0 |
| abstract_inverted_index.and | 98, 106, 119 |
| abstract_inverted_index.has | 5 |
| abstract_inverted_index.the | 36, 52, 110 |
| abstract_inverted_index.data | 87 |
| abstract_inverted_index.deep | 66 |
| abstract_inverted_index.from | 70, 123 |
| abstract_inverted_index.good | 30 |
| abstract_inverted_index.into | 65 |
| abstract_inverted_index.onto | 88 |
| abstract_inverted_index.this | 57 |
| abstract_inverted_index.tiny | 94 |
| abstract_inverted_index.with | 120 |
| abstract_inverted_index.DRIVE | 105 |
| abstract_inverted_index.U-Net | 39, 116 |
| abstract_inverted_index.blood | 3 |
| abstract_inverted_index.given | 51 |
| abstract_inverted_index.guide | 20 |
| abstract_inverted_index.image | 12 |
| abstract_inverted_index.large | 34 |
| abstract_inverted_index.liver | 99 |
| abstract_inverted_index.major | 48 |
| abstract_inverted_index.novel | 62 |
| abstract_inverted_index.shape | 68, 121 |
| abstract_inverted_index.(CAE), | 80 |
| abstract_inverted_index.CAE.\n | 125 |
| abstract_inverted_index.better | 92 |
| abstract_inverted_index.branch | 85 |
| abstract_inverted_index.higher | 89 |
| abstract_inverted_index.issue, | 49 |
| abstract_inverted_index.method | 113 |
| abstract_inverted_index.paper, | 58 |
| abstract_inverted_index.priors | 69, 122 |
| abstract_inverted_index.vessel | 15, 100 |
| abstract_inverted_index.Despite | 28 |
| abstract_inverted_index.ability | 31 |
| abstract_inverted_index.extract | 33 |
| abstract_inverted_index.medical | 11 |
| abstract_inverted_index.of\nour | 112 |
| abstract_inverted_index.present | 60 |
| abstract_inverted_index.remains | 46 |
| abstract_inverted_index.retinal | 97 |
| abstract_inverted_index.systems | 45 |
| abstract_inverted_index.therapy | 25 |
| abstract_inverted_index.trained | 117 |
| abstract_inverted_index.vessels | 4 |
| abstract_inverted_index.without | 118 |
| abstract_inverted_index.(S-OCAE) | 74 |
| abstract_inverted_index.Compared | 76 |
| abstract_inverted_index.approach | 63 |
| abstract_inverted_index.capacity | 37 |
| abstract_inverted_index.compared | 114 |
| abstract_inverted_index.existing | 54 |
| abstract_inverted_index.exploits | 82 |
| abstract_inverted_index.inspired | 40 |
| abstract_inverted_index.recently | 6 |
| abstract_inverted_index.vascular | 44 |
| abstract_inverted_index.3D-IRCADb | 107 |
| abstract_inverted_index.Automatic | 14 |
| abstract_inverted_index.analysis. | 13 |
| abstract_inverted_index.datasets, | 108 |
| abstract_inverted_index.datasets. | 55 |
| abstract_inverted_index.highlight | 109 |
| abstract_inverted_index.performed | 103 |
| abstract_inverted_index.planning. | 27 |
| abstract_inverted_index.clinicians | 21 |
| abstract_inverted_index.diagnosis, | 24 |
| abstract_inverted_index.dimensions | 90 |
| abstract_inverted_index.embedding. | 75 |
| abstract_inverted_index.especially | 50 |
| abstract_inverted_index.extraction | 1 |
| abstract_inverted_index.experienced | 7 |
| abstract_inverted_index.extraction, | 101 |
| abstract_inverted_index.Auto-Encoder | 73 |
| abstract_inverted_index.characterize | 93 |
| abstract_inverted_index.or\nsurgical | 26 |
| abstract_inverted_index.respectively | 102 |
| abstract_inverted_index.scarcity\nof | 53 |
| abstract_inverted_index.segmentation | 16, 67 |
| abstract_inverted_index.Auto-Encoders | 79 |
| abstract_inverted_index.architectures | 41 |
| abstract_inverted_index.effectiveness | 111 |
| abstract_inverted_index.over-complete | 84 |
| abstract_inverted_index.a\ntraditional | 124 |
| abstract_inverted_index.that\nprojects | 86 |
| abstract_inverted_index.that\nintegrates | 64 |
| abstract_inverted_index.computer-assisted | 23 |
| abstract_inverted_index.highly\ndesirable | 18 |
| abstract_inverted_index.widespread\ninterest | 9 |
| abstract_inverted_index.on\npublicly-available | 104 |
| abstract_inverted_index.anatomical\nstructures, | 35 |
| abstract_inverted_index.standard\nConvolutional | 78 |
| abstract_inverted_index.automatically\ndelineate | 43 |
| abstract_inverted_index.structures.\nExperiments | 95 |
| abstract_inverted_index.Semi-Overcomplete\nConvolutional | 72 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 94 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile.value | 0.81637268 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |