Semi-Supervised Dimensionality Reduction Method Utilizing Pairwise Constraints and Integrating Similarity and Dissimilarity among Data Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.21203/rs.3.rs-4495676/v1
Data preprocessing stages, including data reconstruction and dimensionality reduction, play a pivotal role in influencing subsequent machine learning and data mining endeavors. While supervised dimensionality reduction typically surpasses unsupervised methods through direct label exploitation, the scarcity or high acquisition cost of labeled data in practical scenarios has fueled interest in semi-supervised alternatives. These methodologies ingeniously integrate sparse labeled and abundant unlabeled data, to aid data representation and dimensionality reduction.This study introduces a novel nonlinear semi-supervised dimensionality reduction algorithm, which employs pairwise constraints (must-link and cannot-link) and radial basis functions to obtain similarity and dissimilarity among data points. Leveraging spectral decomposition, our algorithm aims to reconstruct the initial data, thereby exposing intricate nonlinear patterns obscured within high-dimensional datasets. Compared to traditional semi-supervised algorithms, a series of experiments based on real data have verified the effectiveness of the proposed method.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.21203/rs.3.rs-4495676/v1
- https://www.researchsquare.com/article/rs-4495676/latest.pdf
- OA Status
- green
- References
- 26
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4399571016
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4399571016Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.21203/rs.3.rs-4495676/v1Digital Object Identifier
- Title
-
Semi-Supervised Dimensionality Reduction Method Utilizing Pairwise Constraints and Integrating Similarity and Dissimilarity among DataWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-06-12Full publication date if available
- Authors
-
Zixuan Liu, Rong LuoList of authors in order
- Landing page
-
https://doi.org/10.21203/rs.3.rs-4495676/v1Publisher landing page
- PDF URL
-
https://www.researchsquare.com/article/rs-4495676/latest.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.researchsquare.com/article/rs-4495676/latest.pdfDirect OA link when available
- Concepts
-
Dimensionality reduction, Computer science, Pairwise comparison, Similarity (geometry), Artificial intelligence, Preprocessor, Curse of dimensionality, Pattern recognition (psychology), Data mining, Machine learning, Reduction (mathematics), Nonlinear dimensionality reduction, Labeled data, Data pre-processing, Mathematics, Image (mathematics), GeometryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
26Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4399571016 |
|---|---|
| doi | https://doi.org/10.21203/rs.3.rs-4495676/v1 |
| ids.doi | https://doi.org/10.21203/rs.3.rs-4495676/v1 |
| ids.openalex | https://openalex.org/W4399571016 |
| fwci | 0.0 |
| type | preprint |
| title | Semi-Supervised Dimensionality Reduction Method Utilizing Pairwise Constraints and Integrating Similarity and Dissimilarity among Data |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10057 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9976999759674072 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Face and Expression Recognition |
| topics[1].id | https://openalex.org/T12535 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9958000183105469 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Machine Learning and Data Classification |
| topics[2].id | https://openalex.org/T10824 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9922999739646912 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Image Retrieval and Classification Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C70518039 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8407938480377197 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q16000077 |
| concepts[0].display_name | Dimensionality reduction |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6616005301475525 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C184898388 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6576354503631592 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1435712 |
| concepts[2].display_name | Pairwise comparison |
| concepts[3].id | https://openalex.org/C103278499 |
| concepts[3].level | 3 |
| concepts[3].score | 0.6338260173797607 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q254465 |
| concepts[3].display_name | Similarity (geometry) |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.6034620404243469 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C34736171 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5274822115898132 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q918333 |
| concepts[5].display_name | Preprocessor |
| concepts[6].id | https://openalex.org/C111030470 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5196260809898376 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1430460 |
| concepts[6].display_name | Curse of dimensionality |
| concepts[7].id | https://openalex.org/C153180895 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5129596590995789 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[7].display_name | Pattern recognition (psychology) |
| concepts[8].id | https://openalex.org/C124101348 |
| concepts[8].level | 1 |
| concepts[8].score | 0.4962316155433655 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[8].display_name | Data mining |
| concepts[9].id | https://openalex.org/C119857082 |
| concepts[9].level | 1 |
| concepts[9].score | 0.49445128440856934 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[9].display_name | Machine learning |
| concepts[10].id | https://openalex.org/C111335779 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4680452346801758 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q3454686 |
| concepts[10].display_name | Reduction (mathematics) |
| concepts[11].id | https://openalex.org/C151876577 |
| concepts[11].level | 3 |
| concepts[11].score | 0.42813533544540405 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7049464 |
| concepts[11].display_name | Nonlinear dimensionality reduction |
| concepts[12].id | https://openalex.org/C2776145971 |
| concepts[12].level | 2 |
| concepts[12].score | 0.42263075709342957 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q30673951 |
| concepts[12].display_name | Labeled data |
| concepts[13].id | https://openalex.org/C10551718 |
| concepts[13].level | 2 |
| concepts[13].score | 0.4187983572483063 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q5227332 |
| concepts[13].display_name | Data pre-processing |
| concepts[14].id | https://openalex.org/C33923547 |
| concepts[14].level | 0 |
| concepts[14].score | 0.1986808180809021 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[14].display_name | Mathematics |
| concepts[15].id | https://openalex.org/C115961682 |
| concepts[15].level | 2 |
| concepts[15].score | 0.06412613391876221 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[15].display_name | Image (mathematics) |
| concepts[16].id | https://openalex.org/C2524010 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[16].display_name | Geometry |
| keywords[0].id | https://openalex.org/keywords/dimensionality-reduction |
| keywords[0].score | 0.8407938480377197 |
| keywords[0].display_name | Dimensionality reduction |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6616005301475525 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/pairwise-comparison |
| keywords[2].score | 0.6576354503631592 |
| keywords[2].display_name | Pairwise comparison |
| keywords[3].id | https://openalex.org/keywords/similarity |
| keywords[3].score | 0.6338260173797607 |
| keywords[3].display_name | Similarity (geometry) |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.6034620404243469 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/preprocessor |
| keywords[5].score | 0.5274822115898132 |
| keywords[5].display_name | Preprocessor |
| keywords[6].id | https://openalex.org/keywords/curse-of-dimensionality |
| keywords[6].score | 0.5196260809898376 |
| keywords[6].display_name | Curse of dimensionality |
| keywords[7].id | https://openalex.org/keywords/pattern-recognition |
| keywords[7].score | 0.5129596590995789 |
| keywords[7].display_name | Pattern recognition (psychology) |
| keywords[8].id | https://openalex.org/keywords/data-mining |
| keywords[8].score | 0.4962316155433655 |
| keywords[8].display_name | Data mining |
| keywords[9].id | https://openalex.org/keywords/machine-learning |
| keywords[9].score | 0.49445128440856934 |
| keywords[9].display_name | Machine learning |
| keywords[10].id | https://openalex.org/keywords/reduction |
| keywords[10].score | 0.4680452346801758 |
| keywords[10].display_name | Reduction (mathematics) |
| keywords[11].id | https://openalex.org/keywords/nonlinear-dimensionality-reduction |
| keywords[11].score | 0.42813533544540405 |
| keywords[11].display_name | Nonlinear dimensionality reduction |
| keywords[12].id | https://openalex.org/keywords/labeled-data |
| keywords[12].score | 0.42263075709342957 |
| keywords[12].display_name | Labeled data |
| keywords[13].id | https://openalex.org/keywords/data-pre-processing |
| keywords[13].score | 0.4187983572483063 |
| keywords[13].display_name | Data pre-processing |
| keywords[14].id | https://openalex.org/keywords/mathematics |
| keywords[14].score | 0.1986808180809021 |
| keywords[14].display_name | Mathematics |
| keywords[15].id | https://openalex.org/keywords/image |
| keywords[15].score | 0.06412613391876221 |
| keywords[15].display_name | Image (mathematics) |
| language | en |
| locations[0].id | doi:10.21203/rs.3.rs-4495676/v1 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306402450 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Research Square (Research Square) |
| locations[0].source.host_organization | https://openalex.org/I4210096694 |
| locations[0].source.host_organization_name | Research Square (United States) |
| locations[0].source.host_organization_lineage | https://openalex.org/I4210096694 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.researchsquare.com/article/rs-4495676/latest.pdf |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.21203/rs.3.rs-4495676/v1 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5104181709 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Zixuan Liu |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4800084 |
| authorships[0].affiliations[0].raw_affiliation_string | Southwest Jiaotong University, School of Mathematics, Chengdu, 611756, China |
| authorships[0].institutions[0].id | https://openalex.org/I4800084 |
| authorships[0].institutions[0].ror | https://ror.org/00hn7w693 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I4800084 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Southwest Jiaotong University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zixuan Liu |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Southwest Jiaotong University, School of Mathematics, Chengdu, 611756, China |
| authorships[1].author.id | https://openalex.org/A5066405314 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-5237-1001 |
| authorships[1].author.display_name | Rong Luo |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4800084 |
| authorships[1].affiliations[0].raw_affiliation_string | Southwest Jiaotong University, School of Mathematics, Chengdu, 611756, China |
| authorships[1].institutions[0].id | https://openalex.org/I4800084 |
| authorships[1].institutions[0].ror | https://ror.org/00hn7w693 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I4800084 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Southwest Jiaotong University |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Rong Luo |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Southwest Jiaotong University, School of Mathematics, Chengdu, 611756, China |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.researchsquare.com/article/rs-4495676/latest.pdf |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Semi-Supervised Dimensionality Reduction Method Utilizing Pairwise Constraints and Integrating Similarity and Dissimilarity among Data |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10057 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9976999759674072 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Face and Expression Recognition |
| related_works | https://openalex.org/W2375574759, https://openalex.org/W2383239174, https://openalex.org/W3088634662, https://openalex.org/W117517268, https://openalex.org/W3162910294, https://openalex.org/W2539700568, https://openalex.org/W2931531042, https://openalex.org/W1489327846, https://openalex.org/W4287375746, https://openalex.org/W3124275785 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.21203/rs.3.rs-4495676/v1 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306402450 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Research Square (Research Square) |
| best_oa_location.source.host_organization | https://openalex.org/I4210096694 |
| best_oa_location.source.host_organization_name | Research Square (United States) |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I4210096694 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.researchsquare.com/article/rs-4495676/latest.pdf |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.21203/rs.3.rs-4495676/v1 |
| primary_location.id | doi:10.21203/rs.3.rs-4495676/v1 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306402450 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Research Square (Research Square) |
| primary_location.source.host_organization | https://openalex.org/I4210096694 |
| primary_location.source.host_organization_name | Research Square (United States) |
| primary_location.source.host_organization_lineage | https://openalex.org/I4210096694 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.researchsquare.com/article/rs-4495676/latest.pdf |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.21203/rs.3.rs-4495676/v1 |
| publication_date | 2024-06-12 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W2159583439, https://openalex.org/W4297533962, https://openalex.org/W3022629704, https://openalex.org/W2135496738, https://openalex.org/W2167267197, https://openalex.org/W2077733625, https://openalex.org/W1966949944, https://openalex.org/W2584571478, https://openalex.org/W3130055355, https://openalex.org/W2001619934, https://openalex.org/W2105831998, https://openalex.org/W2018849884, https://openalex.org/W2137736727, https://openalex.org/W1564277727, https://openalex.org/W2805627121, https://openalex.org/W1511335166, https://openalex.org/W2128728535, https://openalex.org/W3023608713, https://openalex.org/W2114217318, https://openalex.org/W4393202065, https://openalex.org/W2328989934, https://openalex.org/W2951187834, https://openalex.org/W2166820607, https://openalex.org/W2053186076, https://openalex.org/W2067830576, https://openalex.org/W2163584563 |
| referenced_works_count | 26 |
| abstract_inverted_index.a | 11, 72, 123 |
| abstract_inverted_index.in | 14, 44, 50 |
| abstract_inverted_index.of | 41, 125, 135 |
| abstract_inverted_index.on | 128 |
| abstract_inverted_index.or | 37 |
| abstract_inverted_index.to | 63, 90, 104, 119 |
| abstract_inverted_index.aid | 64 |
| abstract_inverted_index.and | 7, 19, 59, 67, 84, 86, 93 |
| abstract_inverted_index.has | 47 |
| abstract_inverted_index.our | 101 |
| abstract_inverted_index.the | 35, 106, 133, 136 |
| abstract_inverted_index.Data | 1 |
| abstract_inverted_index.aims | 103 |
| abstract_inverted_index.cost | 40 |
| abstract_inverted_index.data | 5, 20, 43, 65, 96, 130 |
| abstract_inverted_index.have | 131 |
| abstract_inverted_index.high | 38 |
| abstract_inverted_index.play | 10 |
| abstract_inverted_index.real | 129 |
| abstract_inverted_index.role | 13 |
| abstract_inverted_index.These | 53 |
| abstract_inverted_index.While | 23 |
| abstract_inverted_index.among | 95 |
| abstract_inverted_index.based | 127 |
| abstract_inverted_index.basis | 88 |
| abstract_inverted_index.data, | 62, 108 |
| abstract_inverted_index.label | 33 |
| abstract_inverted_index.novel | 73 |
| abstract_inverted_index.study | 70 |
| abstract_inverted_index.which | 79 |
| abstract_inverted_index.direct | 32 |
| abstract_inverted_index.fueled | 48 |
| abstract_inverted_index.mining | 21 |
| abstract_inverted_index.obtain | 91 |
| abstract_inverted_index.radial | 87 |
| abstract_inverted_index.series | 124 |
| abstract_inverted_index.sparse | 57 |
| abstract_inverted_index.within | 115 |
| abstract_inverted_index.employs | 80 |
| abstract_inverted_index.initial | 107 |
| abstract_inverted_index.labeled | 42, 58 |
| abstract_inverted_index.machine | 17 |
| abstract_inverted_index.method. | 138 |
| abstract_inverted_index.methods | 30 |
| abstract_inverted_index.pivotal | 12 |
| abstract_inverted_index.points. | 97 |
| abstract_inverted_index.stages, | 3 |
| abstract_inverted_index.thereby | 109 |
| abstract_inverted_index.through | 31 |
| abstract_inverted_index.Compared | 118 |
| abstract_inverted_index.abundant | 60 |
| abstract_inverted_index.exposing | 110 |
| abstract_inverted_index.interest | 49 |
| abstract_inverted_index.learning | 18 |
| abstract_inverted_index.obscured | 114 |
| abstract_inverted_index.pairwise | 81 |
| abstract_inverted_index.patterns | 113 |
| abstract_inverted_index.proposed | 137 |
| abstract_inverted_index.scarcity | 36 |
| abstract_inverted_index.spectral | 99 |
| abstract_inverted_index.verified | 132 |
| abstract_inverted_index.algorithm | 102 |
| abstract_inverted_index.datasets. | 117 |
| abstract_inverted_index.functions | 89 |
| abstract_inverted_index.including | 4 |
| abstract_inverted_index.integrate | 56 |
| abstract_inverted_index.intricate | 111 |
| abstract_inverted_index.nonlinear | 74, 112 |
| abstract_inverted_index.practical | 45 |
| abstract_inverted_index.reduction | 26, 77 |
| abstract_inverted_index.scenarios | 46 |
| abstract_inverted_index.surpasses | 28 |
| abstract_inverted_index.typically | 27 |
| abstract_inverted_index.unlabeled | 61 |
| abstract_inverted_index.(must-link | 83 |
| abstract_inverted_index.Leveraging | 98 |
| abstract_inverted_index.algorithm, | 78 |
| abstract_inverted_index.endeavors. | 22 |
| abstract_inverted_index.introduces | 71 |
| abstract_inverted_index.reduction, | 9 |
| abstract_inverted_index.similarity | 92 |
| abstract_inverted_index.subsequent | 16 |
| abstract_inverted_index.supervised | 24 |
| abstract_inverted_index.acquisition | 39 |
| abstract_inverted_index.algorithms, | 122 |
| abstract_inverted_index.constraints | 82 |
| abstract_inverted_index.experiments | 126 |
| abstract_inverted_index.influencing | 15 |
| abstract_inverted_index.ingeniously | 55 |
| abstract_inverted_index.reconstruct | 105 |
| abstract_inverted_index.traditional | 120 |
| abstract_inverted_index.cannot-link) | 85 |
| abstract_inverted_index.unsupervised | 29 |
| abstract_inverted_index.alternatives. | 52 |
| abstract_inverted_index.dissimilarity | 94 |
| abstract_inverted_index.effectiveness | 134 |
| abstract_inverted_index.exploitation, | 34 |
| abstract_inverted_index.methodologies | 54 |
| abstract_inverted_index.preprocessing | 2 |
| abstract_inverted_index.decomposition, | 100 |
| abstract_inverted_index.dimensionality | 8, 25, 68, 76 |
| abstract_inverted_index.reconstruction | 6 |
| abstract_inverted_index.reduction.This | 69 |
| abstract_inverted_index.representation | 66 |
| abstract_inverted_index.semi-supervised | 51, 75, 121 |
| abstract_inverted_index.high-dimensional | 116 |
| abstract_inverted_index.<title>Abstract</title> | 0 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile.value | 0.09980883 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |