Semi-Supervised Sentiment Classification and Emotion Distribution Learning Across Domains Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.1145/3571736
In this study, sentiment classification and emotion distribution learning across domains are both formulated as a semi-supervised domain adaptation problem, which utilizes a small amount of labeled documents in the target domain for model training. By introducing a shared matrix that captures the stable association between document clusters and word clusters, non-negative matrix tri-factorization (NMTF) is robust to the labeled target domain data and has shown remarkable performance in cross-domain text classification. However, the existing NMTF-based models ignore the incompatible relationship of sentiment polarities and the relatedness among emotions. Besides, their applications on large-scale datasets are limited by the high computation complexity. To address these issues, we propose a semi-supervised NMTF framework for sentiment classification and emotion distribution learning across domains. Based on a many-to-many mapping between document clusters and sentiment polarities (or emotions), we first incorporate the prior information of label dependency to improve the model performance. Then, we develop a parallel algorithm based on message passing interface (MPI) to further enhance the model scalability. Extensive experiments on real-world datasets validate the effectiveness of our method.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1145/3571736
- OA Status
- bronze
- Cited By
- 4
- References
- 37
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4309287897
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4309287897Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1145/3571736Digital Object Identifier
- Title
-
Semi-Supervised Sentiment Classification and Emotion Distribution Learning Across DomainsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-11-18Full publication date if available
- Authors
-
Yufu Chen, Yanghui Rao, Shurui Chen, Zhiqi Lei, Haoran Xie, Raymond Y.K. Lau, Jian YinList of authors in order
- Landing page
-
https://doi.org/10.1145/3571736Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
bronzeOpen access status per OpenAlex
- OA URL
-
https://scholars.cityu.edu.hk/en/publications/semi-supervised-sentiment-classification-and-emotion-distributionDirect OA link when available
- Concepts
-
Computer science, Sentiment analysis, Domain adaptation, Artificial intelligence, Scalability, Domain (mathematical analysis), Machine learning, Matrix decomposition, Word (group theory), Dependency (UML), Natural language processing, Data mining, Mathematics, Eigenvalues and eigenvectors, Mathematical analysis, Physics, Geometry, Classifier (UML), Quantum mechanics, DatabaseTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
4Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 4Per-year citation counts (last 5 years)
- References (count)
-
37Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4309287897 |
|---|---|
| doi | https://doi.org/10.1145/3571736 |
| ids.doi | https://doi.org/10.1145/3571736 |
| ids.openalex | https://openalex.org/W4309287897 |
| fwci | 0.78319528 |
| type | article |
| title | Semi-Supervised Sentiment Classification and Emotion Distribution Learning Across Domains |
| awards[0].id | https://openalex.org/G1743797853 |
| awards[0].funder_id | https://openalex.org/F4320309893 |
| awards[0].display_name | |
| awards[0].funder_award_id | 7005780 |
| awards[0].funder_display_name | City University of Hong Kong |
| awards[1].id | https://openalex.org/G4884964026 |
| awards[1].funder_id | https://openalex.org/F4320321001 |
| awards[1].display_name | |
| awards[1].funder_award_id | U1811264, U1811262, U1811261, U1911203, U2001211, and U22B2060 |
| awards[1].funder_display_name | National Natural Science Foundation of China |
| biblio.issue | 5 |
| biblio.volume | 17 |
| biblio.last_page | 30 |
| biblio.first_page | 1 |
| topics[0].id | https://openalex.org/T10664 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Sentiment Analysis and Opinion Mining |
| topics[1].id | https://openalex.org/T10028 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9997000098228455 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Topic Modeling |
| topics[2].id | https://openalex.org/T11550 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9994000196456909 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Text and Document Classification Technologies |
| funders[0].id | https://openalex.org/F4320309893 |
| funders[0].ror | https://ror.org/03q8dnn23 |
| funders[0].display_name | City University of Hong Kong |
| funders[1].id | https://openalex.org/F4320321001 |
| funders[1].ror | https://ror.org/01h0zpd94 |
| funders[1].display_name | National Natural Science Foundation of China |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7909431457519531 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C66402592 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6839890480041504 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2271421 |
| concepts[1].display_name | Sentiment analysis |
| concepts[2].id | https://openalex.org/C2776434776 |
| concepts[2].level | 3 |
| concepts[2].score | 0.60884028673172 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q19246213 |
| concepts[2].display_name | Domain adaptation |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.6021735072135925 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C48044578 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5766595602035522 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q727490 |
| concepts[4].display_name | Scalability |
| concepts[5].id | https://openalex.org/C36503486 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5726219415664673 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11235244 |
| concepts[5].display_name | Domain (mathematical analysis) |
| concepts[6].id | https://openalex.org/C119857082 |
| concepts[6].level | 1 |
| concepts[6].score | 0.48885124921798706 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[6].display_name | Machine learning |
| concepts[7].id | https://openalex.org/C42355184 |
| concepts[7].level | 3 |
| concepts[7].score | 0.48787808418273926 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1361088 |
| concepts[7].display_name | Matrix decomposition |
| concepts[8].id | https://openalex.org/C90805587 |
| concepts[8].level | 2 |
| concepts[8].score | 0.45375677943229675 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q10944557 |
| concepts[8].display_name | Word (group theory) |
| concepts[9].id | https://openalex.org/C19768560 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4527464509010315 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q320727 |
| concepts[9].display_name | Dependency (UML) |
| concepts[10].id | https://openalex.org/C204321447 |
| concepts[10].level | 1 |
| concepts[10].score | 0.393788605928421 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[10].display_name | Natural language processing |
| concepts[11].id | https://openalex.org/C124101348 |
| concepts[11].level | 1 |
| concepts[11].score | 0.3321041464805603 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[11].display_name | Data mining |
| concepts[12].id | https://openalex.org/C33923547 |
| concepts[12].level | 0 |
| concepts[12].score | 0.11317449808120728 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[12].display_name | Mathematics |
| concepts[13].id | https://openalex.org/C158693339 |
| concepts[13].level | 2 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q190524 |
| concepts[13].display_name | Eigenvalues and eigenvectors |
| concepts[14].id | https://openalex.org/C134306372 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[14].display_name | Mathematical analysis |
| concepts[15].id | https://openalex.org/C121332964 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[15].display_name | Physics |
| concepts[16].id | https://openalex.org/C2524010 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[16].display_name | Geometry |
| concepts[17].id | https://openalex.org/C95623464 |
| concepts[17].level | 2 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q1096149 |
| concepts[17].display_name | Classifier (UML) |
| concepts[18].id | https://openalex.org/C62520636 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[18].display_name | Quantum mechanics |
| concepts[19].id | https://openalex.org/C77088390 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q8513 |
| concepts[19].display_name | Database |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7909431457519531 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/sentiment-analysis |
| keywords[1].score | 0.6839890480041504 |
| keywords[1].display_name | Sentiment analysis |
| keywords[2].id | https://openalex.org/keywords/domain-adaptation |
| keywords[2].score | 0.60884028673172 |
| keywords[2].display_name | Domain adaptation |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.6021735072135925 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/scalability |
| keywords[4].score | 0.5766595602035522 |
| keywords[4].display_name | Scalability |
| keywords[5].id | https://openalex.org/keywords/domain |
| keywords[5].score | 0.5726219415664673 |
| keywords[5].display_name | Domain (mathematical analysis) |
| keywords[6].id | https://openalex.org/keywords/machine-learning |
| keywords[6].score | 0.48885124921798706 |
| keywords[6].display_name | Machine learning |
| keywords[7].id | https://openalex.org/keywords/matrix-decomposition |
| keywords[7].score | 0.48787808418273926 |
| keywords[7].display_name | Matrix decomposition |
| keywords[8].id | https://openalex.org/keywords/word |
| keywords[8].score | 0.45375677943229675 |
| keywords[8].display_name | Word (group theory) |
| keywords[9].id | https://openalex.org/keywords/dependency |
| keywords[9].score | 0.4527464509010315 |
| keywords[9].display_name | Dependency (UML) |
| keywords[10].id | https://openalex.org/keywords/natural-language-processing |
| keywords[10].score | 0.393788605928421 |
| keywords[10].display_name | Natural language processing |
| keywords[11].id | https://openalex.org/keywords/data-mining |
| keywords[11].score | 0.3321041464805603 |
| keywords[11].display_name | Data mining |
| keywords[12].id | https://openalex.org/keywords/mathematics |
| keywords[12].score | 0.11317449808120728 |
| keywords[12].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.1145/3571736 |
| locations[0].is_oa | False |
| locations[0].source.id | https://openalex.org/S41523882 |
| locations[0].source.issn | 1556-4681, 1556-472X |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1556-4681 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | ACM Transactions on Knowledge Discovery from Data |
| locations[0].source.host_organization | https://openalex.org/P4310319798 |
| locations[0].source.host_organization_name | Association for Computing Machinery |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319798 |
| locations[0].source.host_organization_lineage_names | Association for Computing Machinery |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | ACM Transactions on Knowledge Discovery from Data |
| locations[0].landing_page_url | https://doi.org/10.1145/3571736 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S41523882 |
| locations[1].source.issn | 1556-4681, 1556-472X |
| locations[1].source.type | journal |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | 1556-4681 |
| locations[1].source.is_core | True |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | ACM Transactions on Knowledge Discovery from Data |
| locations[1].source.host_organization | https://openalex.org/P4310319798 |
| locations[1].source.host_organization_name | Association for Computing Machinery |
| locations[1].source.host_organization_lineage | https://openalex.org/P4310319798 |
| locations[1].source.host_organization_lineage_names | Association for Computing Machinery |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | journal-article |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | ACM Transactions on Knowledge Discovery from Data |
| locations[1].landing_page_url | https://scholars.cityu.edu.hk/en/publications/semi-supervised-sentiment-classification-and-emotion-distribution |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5100731152 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-5209-9706 |
| authorships[0].author.display_name | Yufu Chen |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I157773358 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, China |
| authorships[0].institutions[0].id | https://openalex.org/I157773358 |
| authorships[0].institutions[0].ror | https://ror.org/0064kty71 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I157773358 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Sun Yat-sen University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yufu Chen |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, China |
| authorships[1].author.id | https://openalex.org/A5058291454 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-1610-9599 |
| authorships[1].author.display_name | Yanghui Rao |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I157773358 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, China |
| authorships[1].institutions[0].id | https://openalex.org/I157773358 |
| authorships[1].institutions[0].ror | https://ror.org/0064kty71 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I157773358 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Sun Yat-sen University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Yanghui Rao |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, China |
| authorships[2].author.id | https://openalex.org/A5102935733 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-8719-9176 |
| authorships[2].author.display_name | Shurui Chen |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I157773358 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, China |
| authorships[2].institutions[0].id | https://openalex.org/I157773358 |
| authorships[2].institutions[0].ror | https://ror.org/0064kty71 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I157773358 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Sun Yat-sen University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Shurui Chen |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, China |
| authorships[3].author.id | https://openalex.org/A5072524316 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-4722-811X |
| authorships[3].author.display_name | Zhiqi Lei |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I157773358 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, China |
| authorships[3].institutions[0].id | https://openalex.org/I157773358 |
| authorships[3].institutions[0].ror | https://ror.org/0064kty71 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I157773358 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Sun Yat-sen University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Zhiqi Lei |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, China |
| authorships[4].author.id | https://openalex.org/A5013151488 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-0965-3617 |
| authorships[4].author.display_name | Haoran Xie |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Computing and Decision Sciences, Lingnan University, Hong Kong SAR, China |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Haoran Xie |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Computing and Decision Sciences, Lingnan University, Hong Kong SAR, China |
| authorships[5].author.id | https://openalex.org/A5084348345 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-5751-4550 |
| authorships[5].author.display_name | Raymond Y.K. Lau |
| authorships[5].countries | HK |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I168719708 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Information Systems, College of Business, City University of Hong Kong, Kowloon, Hong Kong SAR, China |
| authorships[5].institutions[0].id | https://openalex.org/I168719708 |
| authorships[5].institutions[0].ror | https://ror.org/03q8dnn23 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I168719708 |
| authorships[5].institutions[0].country_code | HK |
| authorships[5].institutions[0].display_name | City University of Hong Kong |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Raymond Y. K. Lau |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Information Systems, College of Business, City University of Hong Kong, Kowloon, Hong Kong SAR, China |
| authorships[6].author.id | https://openalex.org/A5017205177 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-1214-5384 |
| authorships[6].author.display_name | Jian Yin |
| authorships[6].countries | CN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I157773358 |
| authorships[6].affiliations[0].raw_affiliation_string | School of Artificial Intelligence, Guangdong Key Laboratory of Big Data Analysis and Processing, Sun Yat-sen University, Guangzhou, China |
| authorships[6].institutions[0].id | https://openalex.org/I157773358 |
| authorships[6].institutions[0].ror | https://ror.org/0064kty71 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I157773358 |
| authorships[6].institutions[0].country_code | CN |
| authorships[6].institutions[0].display_name | Sun Yat-sen University |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Jian Yin |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | School of Artificial Intelligence, Guangdong Key Laboratory of Big Data Analysis and Processing, Sun Yat-sen University, Guangzhou, China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://scholars.cityu.edu.hk/en/publications/semi-supervised-sentiment-classification-and-emotion-distribution |
| open_access.oa_status | bronze |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Semi-Supervised Sentiment Classification and Emotion Distribution Learning Across Domains |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10664 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Sentiment Analysis and Opinion Mining |
| related_works | https://openalex.org/W2548633793, https://openalex.org/W3013279174, https://openalex.org/W2941935829, https://openalex.org/W2596247554, https://openalex.org/W3132372214, https://openalex.org/W4224284088, https://openalex.org/W4286571989, https://openalex.org/W2765903680, https://openalex.org/W4317653575, https://openalex.org/W2801635251 |
| cited_by_count | 4 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 4 |
| locations_count | 2 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S41523882 |
| best_oa_location.source.issn | 1556-4681, 1556-472X |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 1556-4681 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | ACM Transactions on Knowledge Discovery from Data |
| best_oa_location.source.host_organization | https://openalex.org/P4310319798 |
| best_oa_location.source.host_organization_name | Association for Computing Machinery |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319798 |
| best_oa_location.source.host_organization_lineage_names | Association for Computing Machinery |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | ACM Transactions on Knowledge Discovery from Data |
| best_oa_location.landing_page_url | https://scholars.cityu.edu.hk/en/publications/semi-supervised-sentiment-classification-and-emotion-distribution |
| primary_location.id | doi:10.1145/3571736 |
| primary_location.is_oa | False |
| primary_location.source.id | https://openalex.org/S41523882 |
| primary_location.source.issn | 1556-4681, 1556-472X |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1556-4681 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | ACM Transactions on Knowledge Discovery from Data |
| primary_location.source.host_organization | https://openalex.org/P4310319798 |
| primary_location.source.host_organization_name | Association for Computing Machinery |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319798 |
| primary_location.source.host_organization_lineage_names | Association for Computing Machinery |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | ACM Transactions on Knowledge Discovery from Data |
| primary_location.landing_page_url | https://doi.org/10.1145/3571736 |
| publication_date | 2022-11-18 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W2045631398, https://openalex.org/W2962932396, https://openalex.org/W4210768739, https://openalex.org/W2049633694, https://openalex.org/W2043545458, https://openalex.org/W2889774592, https://openalex.org/W2963026768, https://openalex.org/W2524210471, https://openalex.org/W2104090402, https://openalex.org/W2964216356, https://openalex.org/W2097089247, https://openalex.org/W2153353890, https://openalex.org/W4205184193, https://openalex.org/W2250539671, https://openalex.org/W3169312924, https://openalex.org/W2092415370, https://openalex.org/W1969486090, https://openalex.org/W2285696530, https://openalex.org/W2045599215, https://openalex.org/W4229977739, https://openalex.org/W2105468141, https://openalex.org/W2144359569, https://openalex.org/W2146111747, https://openalex.org/W2055103902, https://openalex.org/W2565649476, https://openalex.org/W2767770737, https://openalex.org/W1985155799, https://openalex.org/W2890484448, https://openalex.org/W2502406077, https://openalex.org/W2792932412, https://openalex.org/W2750779823, https://openalex.org/W2559997609, https://openalex.org/W128638292, https://openalex.org/W4213069590, https://openalex.org/W2531563875, https://openalex.org/W1603598191, https://openalex.org/W2599674900 |
| referenced_works_count | 37 |
| abstract_inverted_index.a | 15, 22, 37, 108, 123, 151 |
| abstract_inverted_index.By | 35 |
| abstract_inverted_index.In | 0 |
| abstract_inverted_index.To | 102 |
| abstract_inverted_index.as | 14 |
| abstract_inverted_index.by | 97 |
| abstract_inverted_index.in | 28, 68 |
| abstract_inverted_index.is | 55 |
| abstract_inverted_index.of | 25, 81, 140, 174 |
| abstract_inverted_index.on | 92, 122, 155, 168 |
| abstract_inverted_index.to | 57, 143, 160 |
| abstract_inverted_index.we | 106, 134, 149 |
| abstract_inverted_index.(or | 132 |
| abstract_inverted_index.and | 5, 48, 63, 84, 115, 129 |
| abstract_inverted_index.are | 11, 95 |
| abstract_inverted_index.for | 32, 112 |
| abstract_inverted_index.has | 64 |
| abstract_inverted_index.our | 175 |
| abstract_inverted_index.the | 29, 42, 58, 73, 78, 85, 98, 137, 145, 163, 172 |
| abstract_inverted_index.NMTF | 110 |
| abstract_inverted_index.both | 12 |
| abstract_inverted_index.data | 62 |
| abstract_inverted_index.high | 99 |
| abstract_inverted_index.text | 70 |
| abstract_inverted_index.that | 40 |
| abstract_inverted_index.this | 1 |
| abstract_inverted_index.word | 49 |
| abstract_inverted_index.(MPI) | 159 |
| abstract_inverted_index.Based | 121 |
| abstract_inverted_index.Then, | 148 |
| abstract_inverted_index.among | 87 |
| abstract_inverted_index.based | 154 |
| abstract_inverted_index.first | 135 |
| abstract_inverted_index.label | 141 |
| abstract_inverted_index.model | 33, 146, 164 |
| abstract_inverted_index.prior | 138 |
| abstract_inverted_index.shown | 65 |
| abstract_inverted_index.small | 23 |
| abstract_inverted_index.their | 90 |
| abstract_inverted_index.these | 104 |
| abstract_inverted_index.which | 20 |
| abstract_inverted_index.(NMTF) | 54 |
| abstract_inverted_index.across | 9, 119 |
| abstract_inverted_index.amount | 24 |
| abstract_inverted_index.domain | 17, 31, 61 |
| abstract_inverted_index.ignore | 77 |
| abstract_inverted_index.matrix | 39, 52 |
| abstract_inverted_index.models | 76 |
| abstract_inverted_index.robust | 56 |
| abstract_inverted_index.shared | 38 |
| abstract_inverted_index.stable | 43 |
| abstract_inverted_index.study, | 2 |
| abstract_inverted_index.target | 30, 60 |
| abstract_inverted_index.address | 103 |
| abstract_inverted_index.between | 45, 126 |
| abstract_inverted_index.develop | 150 |
| abstract_inverted_index.domains | 10 |
| abstract_inverted_index.emotion | 6, 116 |
| abstract_inverted_index.enhance | 162 |
| abstract_inverted_index.further | 161 |
| abstract_inverted_index.improve | 144 |
| abstract_inverted_index.issues, | 105 |
| abstract_inverted_index.labeled | 26, 59 |
| abstract_inverted_index.limited | 96 |
| abstract_inverted_index.mapping | 125 |
| abstract_inverted_index.message | 156 |
| abstract_inverted_index.method. | 176 |
| abstract_inverted_index.passing | 157 |
| abstract_inverted_index.propose | 107 |
| abstract_inverted_index.Besides, | 89 |
| abstract_inverted_index.However, | 72 |
| abstract_inverted_index.captures | 41 |
| abstract_inverted_index.clusters | 47, 128 |
| abstract_inverted_index.datasets | 94, 170 |
| abstract_inverted_index.document | 46, 127 |
| abstract_inverted_index.domains. | 120 |
| abstract_inverted_index.existing | 74 |
| abstract_inverted_index.learning | 8, 118 |
| abstract_inverted_index.parallel | 152 |
| abstract_inverted_index.problem, | 19 |
| abstract_inverted_index.utilizes | 21 |
| abstract_inverted_index.validate | 171 |
| abstract_inverted_index.Extensive | 166 |
| abstract_inverted_index.algorithm | 153 |
| abstract_inverted_index.clusters, | 50 |
| abstract_inverted_index.documents | 27 |
| abstract_inverted_index.emotions. | 88 |
| abstract_inverted_index.framework | 111 |
| abstract_inverted_index.interface | 158 |
| abstract_inverted_index.sentiment | 3, 82, 113, 130 |
| abstract_inverted_index.training. | 34 |
| abstract_inverted_index.NMTF-based | 75 |
| abstract_inverted_index.adaptation | 18 |
| abstract_inverted_index.dependency | 142 |
| abstract_inverted_index.emotions), | 133 |
| abstract_inverted_index.formulated | 13 |
| abstract_inverted_index.polarities | 83, 131 |
| abstract_inverted_index.real-world | 169 |
| abstract_inverted_index.remarkable | 66 |
| abstract_inverted_index.association | 44 |
| abstract_inverted_index.complexity. | 101 |
| abstract_inverted_index.computation | 100 |
| abstract_inverted_index.experiments | 167 |
| abstract_inverted_index.incorporate | 136 |
| abstract_inverted_index.information | 139 |
| abstract_inverted_index.introducing | 36 |
| abstract_inverted_index.large-scale | 93 |
| abstract_inverted_index.performance | 67 |
| abstract_inverted_index.relatedness | 86 |
| abstract_inverted_index.applications | 91 |
| abstract_inverted_index.cross-domain | 69 |
| abstract_inverted_index.distribution | 7, 117 |
| abstract_inverted_index.incompatible | 79 |
| abstract_inverted_index.many-to-many | 124 |
| abstract_inverted_index.non-negative | 51 |
| abstract_inverted_index.performance. | 147 |
| abstract_inverted_index.relationship | 80 |
| abstract_inverted_index.scalability. | 165 |
| abstract_inverted_index.effectiveness | 173 |
| abstract_inverted_index.classification | 4, 114 |
| abstract_inverted_index.classification. | 71 |
| abstract_inverted_index.semi-supervised | 16, 109 |
| abstract_inverted_index.tri-factorization | 53 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 97 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile.value | 0.7297326 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |