Semi-Unsupervised Lifelong Learning for Sentiment Classification Article Swipe
YOU?
·
· 2019
· Open Access
·
· DOI: https://doi.org/10.1145/3341069.3342992
Lifelong machine learning is a novel machine learning paradigm which continually learns tasks and accumulates knowledge for reuse. The knowledge extracting and reusing abilities enable lifelong machine learning to understand the knowledge for solving a task and obtain the ability to solve the related problems. In sentiment classification, traditional approaches like Naive Bayes focus on the probability for each word with positive or negative sentiment. However, the lifelong machine learning in this paper will investigate this problem in a different angle and attempt to discover which words determine the sentiment of a review. We will pay all attention to obtain knowledge during learning for future learning rather than just solve a current task.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.1145/3341069.3342992
- OA Status
- green
- References
- 7
- Related Works
- 20
- OpenAlex ID
- https://openalex.org/W2943100059
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2943100059Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1145/3341069.3342992Digital Object Identifier
- Title
-
Semi-Unsupervised Lifelong Learning for Sentiment ClassificationWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2019Year of publication
- Publication date
-
2019-06-22Full publication date if available
- Authors
-
Xianbin Hong, Gautam Pal, Sheng-Uei Guan, Prudence W. H. Wong, Dawei Liu, Ka Lok Man, Xin HuangList of authors in order
- Landing page
-
https://doi.org/10.1145/3341069.3342992Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/1905.01988Direct OA link when available
- Concepts
-
Lifelong learning, Computer science, Artificial intelligence, Task (project management), Machine learning, Reuse, Sentiment analysis, Focus (optics), Naive Bayes classifier, Natural language processing, Psychology, Support vector machine, Engineering, Waste management, Systems engineering, Physics, Optics, PedagogyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
7Number of works referenced by this work
- Related works (count)
-
20Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2943100059 |
|---|---|
| doi | https://doi.org/10.1145/3341069.3342992 |
| ids.doi | https://doi.org/10.1145/3341069.3342992 |
| ids.mag | 2943100059 |
| ids.openalex | https://openalex.org/W2943100059 |
| fwci | 0.0 |
| type | preprint |
| title | Semi-Unsupervised Lifelong Learning for Sentiment Classification |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 92 |
| biblio.first_page | 87 |
| topics[0].id | https://openalex.org/T11307 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9984999895095825 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Domain Adaptation and Few-Shot Learning |
| topics[1].id | https://openalex.org/T11550 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9973999857902527 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Text and Document Classification Technologies |
| topics[2].id | https://openalex.org/T10028 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9909999966621399 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Topic Modeling |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C108771440 |
| concepts[0].level | 2 |
| concepts[0].score | 0.867485523223877 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q368475 |
| concepts[0].display_name | Lifelong learning |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7428383827209473 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.7238368988037109 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C2780451532 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6868477463722229 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q759676 |
| concepts[3].display_name | Task (project management) |
| concepts[4].id | https://openalex.org/C119857082 |
| concepts[4].level | 1 |
| concepts[4].score | 0.620979905128479 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[4].display_name | Machine learning |
| concepts[5].id | https://openalex.org/C206588197 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5736238360404968 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q846574 |
| concepts[5].display_name | Reuse |
| concepts[6].id | https://openalex.org/C66402592 |
| concepts[6].level | 2 |
| concepts[6].score | 0.516342282295227 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2271421 |
| concepts[6].display_name | Sentiment analysis |
| concepts[7].id | https://openalex.org/C192209626 |
| concepts[7].level | 2 |
| concepts[7].score | 0.49952125549316406 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q190909 |
| concepts[7].display_name | Focus (optics) |
| concepts[8].id | https://openalex.org/C52001869 |
| concepts[8].level | 3 |
| concepts[8].score | 0.4321097433567047 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q812530 |
| concepts[8].display_name | Naive Bayes classifier |
| concepts[9].id | https://openalex.org/C204321447 |
| concepts[9].level | 1 |
| concepts[9].score | 0.41691720485687256 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[9].display_name | Natural language processing |
| concepts[10].id | https://openalex.org/C15744967 |
| concepts[10].level | 0 |
| concepts[10].score | 0.12465208768844604 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[10].display_name | Psychology |
| concepts[11].id | https://openalex.org/C12267149 |
| concepts[11].level | 2 |
| concepts[11].score | 0.09981945157051086 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q282453 |
| concepts[11].display_name | Support vector machine |
| concepts[12].id | https://openalex.org/C127413603 |
| concepts[12].level | 0 |
| concepts[12].score | 0.09577041864395142 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[12].display_name | Engineering |
| concepts[13].id | https://openalex.org/C548081761 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q180388 |
| concepts[13].display_name | Waste management |
| concepts[14].id | https://openalex.org/C201995342 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q682496 |
| concepts[14].display_name | Systems engineering |
| concepts[15].id | https://openalex.org/C121332964 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[15].display_name | Physics |
| concepts[16].id | https://openalex.org/C120665830 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q14620 |
| concepts[16].display_name | Optics |
| concepts[17].id | https://openalex.org/C19417346 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q7922 |
| concepts[17].display_name | Pedagogy |
| keywords[0].id | https://openalex.org/keywords/lifelong-learning |
| keywords[0].score | 0.867485523223877 |
| keywords[0].display_name | Lifelong learning |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7428383827209473 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.7238368988037109 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/task |
| keywords[3].score | 0.6868477463722229 |
| keywords[3].display_name | Task (project management) |
| keywords[4].id | https://openalex.org/keywords/machine-learning |
| keywords[4].score | 0.620979905128479 |
| keywords[4].display_name | Machine learning |
| keywords[5].id | https://openalex.org/keywords/reuse |
| keywords[5].score | 0.5736238360404968 |
| keywords[5].display_name | Reuse |
| keywords[6].id | https://openalex.org/keywords/sentiment-analysis |
| keywords[6].score | 0.516342282295227 |
| keywords[6].display_name | Sentiment analysis |
| keywords[7].id | https://openalex.org/keywords/focus |
| keywords[7].score | 0.49952125549316406 |
| keywords[7].display_name | Focus (optics) |
| keywords[8].id | https://openalex.org/keywords/naive-bayes-classifier |
| keywords[8].score | 0.4321097433567047 |
| keywords[8].display_name | Naive Bayes classifier |
| keywords[9].id | https://openalex.org/keywords/natural-language-processing |
| keywords[9].score | 0.41691720485687256 |
| keywords[9].display_name | Natural language processing |
| keywords[10].id | https://openalex.org/keywords/psychology |
| keywords[10].score | 0.12465208768844604 |
| keywords[10].display_name | Psychology |
| keywords[11].id | https://openalex.org/keywords/support-vector-machine |
| keywords[11].score | 0.09981945157051086 |
| keywords[11].display_name | Support vector machine |
| keywords[12].id | https://openalex.org/keywords/engineering |
| keywords[12].score | 0.09577041864395142 |
| keywords[12].display_name | Engineering |
| language | en |
| locations[0].id | doi:10.1145/3341069.3342992 |
| locations[0].is_oa | False |
| locations[0].source | |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Proceedings of the 2019 3rd High Performance Computing and Cluster Technologies Conference |
| locations[0].landing_page_url | https://doi.org/10.1145/3341069.3342992 |
| locations[1].id | mag:2943100059 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | arXiv (Cornell University) |
| locations[1].landing_page_url | https://arxiv.org/pdf/1905.01988 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5021761370 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-1678-0948 |
| authorships[0].author.display_name | Xianbin Hong |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Xianbin Hong |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5006072365 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-2594-9699 |
| authorships[1].author.display_name | Gautam Pal |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Gautam Pal |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5065827089 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-3968-9752 |
| authorships[2].author.display_name | Sheng-Uei Guan |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Sheng-Uei Guan |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5063692696 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-7935-7245 |
| authorships[3].author.display_name | Prudence W. H. Wong |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Prudence Wong |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5100638482 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-5553-2379 |
| authorships[4].author.display_name | Dawei Liu |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Dawei Liu |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5075116069 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-5787-4716 |
| authorships[5].author.display_name | Ka Lok Man |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Ka Lok Man |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5005526322 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-2313-8104 |
| authorships[6].author.display_name | Xin Huang |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Xin Huang |
| authorships[6].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/1905.01988 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Semi-Unsupervised Lifelong Learning for Sentiment Classification |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11307 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9984999895095825 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Domain Adaptation and Few-Shot Learning |
| related_works | https://openalex.org/W2947318369, https://openalex.org/W3026935788, https://openalex.org/W2783905839, https://openalex.org/W1589184028, https://openalex.org/W2133013156, https://openalex.org/W3128225449, https://openalex.org/W1513681384, https://openalex.org/W3153601436, https://openalex.org/W2250348247, https://openalex.org/W2780336799, https://openalex.org/W1992587951, https://openalex.org/W2736800466, https://openalex.org/W2334177868, https://openalex.org/W2507351238, https://openalex.org/W3037024089, https://openalex.org/W2139638712, https://openalex.org/W3088919672, https://openalex.org/W2765169500, https://openalex.org/W3002917088, https://openalex.org/W2981940391 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | mag:2943100059 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | arXiv (Cornell University) |
| best_oa_location.landing_page_url | https://arxiv.org/pdf/1905.01988 |
| primary_location.id | doi:10.1145/3341069.3342992 |
| primary_location.is_oa | False |
| primary_location.source | |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Proceedings of the 2019 3rd High Performance Computing and Cluster Technologies Conference |
| primary_location.landing_page_url | https://doi.org/10.1145/3341069.3342992 |
| publication_date | 2019-06-22 |
| publication_year | 2019 |
| referenced_works | https://openalex.org/W2913340405, https://openalex.org/W2963209029, https://openalex.org/W2910248690, https://openalex.org/W2940792992, https://openalex.org/W2126204609, https://openalex.org/W1553187123, https://openalex.org/W1519626139 |
| referenced_works_count | 7 |
| abstract_inverted_index.a | 4, 34, 78, 91, 110 |
| abstract_inverted_index.In | 45 |
| abstract_inverted_index.We | 93 |
| abstract_inverted_index.in | 70, 77 |
| abstract_inverted_index.is | 3 |
| abstract_inverted_index.of | 90 |
| abstract_inverted_index.on | 54 |
| abstract_inverted_index.or | 62 |
| abstract_inverted_index.to | 28, 40, 83, 98 |
| abstract_inverted_index.The | 18 |
| abstract_inverted_index.all | 96 |
| abstract_inverted_index.and | 13, 21, 36, 81 |
| abstract_inverted_index.for | 16, 32, 57, 103 |
| abstract_inverted_index.pay | 95 |
| abstract_inverted_index.the | 30, 38, 42, 55, 66, 88 |
| abstract_inverted_index.each | 58 |
| abstract_inverted_index.just | 108 |
| abstract_inverted_index.like | 50 |
| abstract_inverted_index.task | 35 |
| abstract_inverted_index.than | 107 |
| abstract_inverted_index.this | 71, 75 |
| abstract_inverted_index.will | 73, 94 |
| abstract_inverted_index.with | 60 |
| abstract_inverted_index.word | 59 |
| abstract_inverted_index.Bayes | 52 |
| abstract_inverted_index.Naive | 51 |
| abstract_inverted_index.angle | 80 |
| abstract_inverted_index.focus | 53 |
| abstract_inverted_index.novel | 5 |
| abstract_inverted_index.paper | 72 |
| abstract_inverted_index.solve | 41, 109 |
| abstract_inverted_index.task. | 112 |
| abstract_inverted_index.tasks | 12 |
| abstract_inverted_index.which | 9, 85 |
| abstract_inverted_index.words | 86 |
| abstract_inverted_index.during | 101 |
| abstract_inverted_index.enable | 24 |
| abstract_inverted_index.future | 104 |
| abstract_inverted_index.learns | 11 |
| abstract_inverted_index.obtain | 37, 99 |
| abstract_inverted_index.rather | 106 |
| abstract_inverted_index.reuse. | 17 |
| abstract_inverted_index.ability | 39 |
| abstract_inverted_index.attempt | 82 |
| abstract_inverted_index.current | 111 |
| abstract_inverted_index.machine | 1, 6, 26, 68 |
| abstract_inverted_index.problem | 76 |
| abstract_inverted_index.related | 43 |
| abstract_inverted_index.reusing | 22 |
| abstract_inverted_index.review. | 92 |
| abstract_inverted_index.solving | 33 |
| abstract_inverted_index.However, | 65 |
| abstract_inverted_index.Lifelong | 0 |
| abstract_inverted_index.discover | 84 |
| abstract_inverted_index.learning | 2, 7, 27, 69, 102, 105 |
| abstract_inverted_index.lifelong | 25, 67 |
| abstract_inverted_index.negative | 63 |
| abstract_inverted_index.paradigm | 8 |
| abstract_inverted_index.positive | 61 |
| abstract_inverted_index.abilities | 23 |
| abstract_inverted_index.attention | 97 |
| abstract_inverted_index.determine | 87 |
| abstract_inverted_index.different | 79 |
| abstract_inverted_index.knowledge | 15, 19, 31, 100 |
| abstract_inverted_index.problems. | 44 |
| abstract_inverted_index.sentiment | 46, 89 |
| abstract_inverted_index.approaches | 49 |
| abstract_inverted_index.extracting | 20 |
| abstract_inverted_index.sentiment. | 64 |
| abstract_inverted_index.understand | 29 |
| abstract_inverted_index.accumulates | 14 |
| abstract_inverted_index.continually | 10 |
| abstract_inverted_index.investigate | 74 |
| abstract_inverted_index.probability | 56 |
| abstract_inverted_index.traditional | 48 |
| abstract_inverted_index.classification, | 47 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 7 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/4 |
| sustainable_development_goals[0].score | 0.41999998688697815 |
| sustainable_development_goals[0].display_name | Quality Education |
| citation_normalized_percentile.value | 0.03494804 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |