Semi-Unsupervised Lifelong Learning for Sentiment Classification: Less Manual Data Annotation and More Self-Studying Article Swipe
YOU?
·
· 2019
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.1905.01988
Lifelong machine learning is a novel machine learning paradigm which can continually accumulate knowledge during learning. The knowledge extracting and reusing abilities enable the lifelong machine learning to solve the related problems. The traditional approaches like Naïve Bayes and some neural network based approaches only aim to achieve the best performance upon a single task. Unlike them, the lifelong machine learning in this paper focuses on how to accumulate knowledge during learning and leverage them for further tasks. Meanwhile, the demand for labelled data for training also is significantly decreased with the knowledge reusing. This paper suggests that the aim of the lifelong learning is to use less labelled data and computational cost to achieve the performance as well as or even better than the supervised learning.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/1905.01988
- https://arxiv.org/pdf/1905.01988
- OA Status
- green
- References
- 8
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2947318369
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2947318369Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.1905.01988Digital Object Identifier
- Title
-
Semi-Unsupervised Lifelong Learning for Sentiment Classification: Less Manual Data Annotation and More Self-StudyingWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2019Year of publication
- Publication date
-
2019-04-30Full publication date if available
- Authors
-
Xianbin Hong, Gautam Pal, Sheng-Uei Guan, Prudence W. H. Wong, Dawei Liu, Ka Lok Man, Xin HuangList of authors in order
- Landing page
-
https://arxiv.org/abs/1905.01988Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/1905.01988Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/1905.01988Direct OA link when available
- Concepts
-
Annotation, Lifelong learning, Computer science, Artificial intelligence, Unsupervised learning, Natural language processing, Psychology, PedagogyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
8Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2947318369 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.1905.01988 |
| ids.doi | https://doi.org/10.48550/arxiv.1905.01988 |
| ids.mag | 2947318369 |
| ids.openalex | https://openalex.org/W2947318369 |
| fwci | |
| type | preprint |
| title | Semi-Unsupervised Lifelong Learning for Sentiment Classification: Less Manual Data Annotation and More Self-Studying |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11307 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9969000220298767 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Domain Adaptation and Few-Shot Learning |
| topics[1].id | https://openalex.org/T10664 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9950000047683716 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Sentiment Analysis and Opinion Mining |
| topics[2].id | https://openalex.org/T11550 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9923999905586243 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Text and Document Classification Technologies |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2776321320 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7698462009429932 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q857525 |
| concepts[0].display_name | Annotation |
| concepts[1].id | https://openalex.org/C108771440 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6696908473968506 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q368475 |
| concepts[1].display_name | Lifelong learning |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.6436609625816345 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5635963678359985 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C8038995 |
| concepts[4].level | 2 |
| concepts[4].score | 0.49211591482162476 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1152135 |
| concepts[4].display_name | Unsupervised learning |
| concepts[5].id | https://openalex.org/C204321447 |
| concepts[5].level | 1 |
| concepts[5].score | 0.470889151096344 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[5].display_name | Natural language processing |
| concepts[6].id | https://openalex.org/C15744967 |
| concepts[6].level | 0 |
| concepts[6].score | 0.2203463613986969 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[6].display_name | Psychology |
| concepts[7].id | https://openalex.org/C19417346 |
| concepts[7].level | 1 |
| concepts[7].score | 0.0 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7922 |
| concepts[7].display_name | Pedagogy |
| keywords[0].id | https://openalex.org/keywords/annotation |
| keywords[0].score | 0.7698462009429932 |
| keywords[0].display_name | Annotation |
| keywords[1].id | https://openalex.org/keywords/lifelong-learning |
| keywords[1].score | 0.6696908473968506 |
| keywords[1].display_name | Lifelong learning |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.6436609625816345 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.5635963678359985 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/unsupervised-learning |
| keywords[4].score | 0.49211591482162476 |
| keywords[4].display_name | Unsupervised learning |
| keywords[5].id | https://openalex.org/keywords/natural-language-processing |
| keywords[5].score | 0.470889151096344 |
| keywords[5].display_name | Natural language processing |
| keywords[6].id | https://openalex.org/keywords/psychology |
| keywords[6].score | 0.2203463613986969 |
| keywords[6].display_name | Psychology |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:1905.01988 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/1905.01988 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/1905.01988 |
| locations[1].id | doi:10.48550/arxiv.1905.01988 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.1905.01988 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5021761370 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-1678-0948 |
| authorships[0].author.display_name | Xianbin Hong |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I69356397 |
| authorships[0].affiliations[0].raw_affiliation_string | Research Institute of Big Data, Analytics, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, China |
| authorships[0].institutions[0].id | https://openalex.org/I69356397 |
| authorships[0].institutions[0].ror | https://ror.org/03zmrmn05 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I69356397 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Xi’an Jiaotong-Liverpool University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Xianbin Hong |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Research Institute of Big Data, Analytics, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, China |
| authorships[1].author.id | https://openalex.org/A5006072365 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-2594-9699 |
| authorships[1].author.display_name | Gautam Pal |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I69356397 |
| authorships[1].affiliations[0].raw_affiliation_string | Research Institute of Big Data, Analytics, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, China |
| authorships[1].institutions[0].id | https://openalex.org/I69356397 |
| authorships[1].institutions[0].ror | https://ror.org/03zmrmn05 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I69356397 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Xi’an Jiaotong-Liverpool University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Gautam Pal |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Research Institute of Big Data, Analytics, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, China |
| authorships[2].author.id | https://openalex.org/A5065827089 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-3968-9752 |
| authorships[2].author.display_name | Sheng-Uei Guan |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I69356397 |
| authorships[2].affiliations[0].raw_affiliation_string | Research Institute of Big Data, Analytics, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, China |
| authorships[2].institutions[0].id | https://openalex.org/I69356397 |
| authorships[2].institutions[0].ror | https://ror.org/03zmrmn05 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I69356397 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Xi’an Jiaotong-Liverpool University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Sheng-Uei Guan |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Research Institute of Big Data, Analytics, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, China |
| authorships[3].author.id | https://openalex.org/A5063692696 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-7935-7245 |
| authorships[3].author.display_name | Prudence W. H. Wong |
| authorships[3].countries | GB |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I146655781 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Computer Science, The University of Liverpool, Liverpool, Merseyside, UK |
| authorships[3].institutions[0].id | https://openalex.org/I146655781 |
| authorships[3].institutions[0].ror | https://ror.org/04xs57h96 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I146655781 |
| authorships[3].institutions[0].country_code | GB |
| authorships[3].institutions[0].display_name | University of Liverpool |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Prudence Wong |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Computer Science, The University of Liverpool, Liverpool, Merseyside, UK |
| authorships[4].author.id | https://openalex.org/A5100638487 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-2268-5632 |
| authorships[4].author.display_name | Dawei Liu |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I69356397 |
| authorships[4].affiliations[0].raw_affiliation_string | Research Institute of Big Data, Analytics, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, China |
| authorships[4].institutions[0].id | https://openalex.org/I69356397 |
| authorships[4].institutions[0].ror | https://ror.org/03zmrmn05 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I69356397 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Xi’an Jiaotong-Liverpool University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Dawei Liu |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Research Institute of Big Data, Analytics, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, China |
| authorships[5].author.id | https://openalex.org/A5075116069 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-5787-4716 |
| authorships[5].author.display_name | Ka Lok Man |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I69356397 |
| authorships[5].affiliations[0].raw_affiliation_string | Research Institute of Big Data, Analytics, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, China |
| authorships[5].institutions[0].id | https://openalex.org/I69356397 |
| authorships[5].institutions[0].ror | https://ror.org/03zmrmn05 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I69356397 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Xi’an Jiaotong-Liverpool University |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Ka Lok Man |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Research Institute of Big Data, Analytics, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, China |
| authorships[6].author.id | https://openalex.org/A5005526322 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-2313-8104 |
| authorships[6].author.display_name | Xin Huang |
| authorships[6].countries | CN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I69356397 |
| authorships[6].affiliations[0].raw_affiliation_string | Research Institute of Big Data, Analytics, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, China |
| authorships[6].institutions[0].id | https://openalex.org/I69356397 |
| authorships[6].institutions[0].ror | https://ror.org/03zmrmn05 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I69356397 |
| authorships[6].institutions[0].country_code | CN |
| authorships[6].institutions[0].display_name | Xi’an Jiaotong-Liverpool University |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Xin Huang |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Research Institute of Big Data, Analytics, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/1905.01988 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Semi-Unsupervised Lifelong Learning for Sentiment Classification: Less Manual Data Annotation and More Self-Studying |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11307 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9969000220298767 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Domain Adaptation and Few-Shot Learning |
| related_works | https://openalex.org/W2364105709, https://openalex.org/W2361861616, https://openalex.org/W2384383462, https://openalex.org/W2380954666, https://openalex.org/W2263699433, https://openalex.org/W422428167, https://openalex.org/W2377979023, https://openalex.org/W1981922029, https://openalex.org/W2037025106, https://openalex.org/W3204019825 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:1905.01988 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/1905.01988 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/1905.01988 |
| primary_location.id | pmh:oai:arXiv.org:1905.01988 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/1905.01988 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/1905.01988 |
| publication_date | 2019-04-30 |
| publication_year | 2019 |
| referenced_works | https://openalex.org/W2913340405, https://openalex.org/W2940792992, https://openalex.org/W2963209029, https://openalex.org/W2133013156, https://openalex.org/W2126204609, https://openalex.org/W1553187123, https://openalex.org/W1519626139, https://openalex.org/W2910248690 |
| referenced_works_count | 8 |
| abstract_inverted_index.a | 4, 52 |
| abstract_inverted_index.as | 117, 119 |
| abstract_inverted_index.in | 61 |
| abstract_inverted_index.is | 3, 87, 104 |
| abstract_inverted_index.of | 100 |
| abstract_inverted_index.on | 65 |
| abstract_inverted_index.or | 120 |
| abstract_inverted_index.to | 27, 46, 67, 105, 113 |
| abstract_inverted_index.The | 16, 32 |
| abstract_inverted_index.aim | 45, 99 |
| abstract_inverted_index.and | 19, 38, 72, 110 |
| abstract_inverted_index.can | 10 |
| abstract_inverted_index.for | 75, 81, 84 |
| abstract_inverted_index.how | 66 |
| abstract_inverted_index.the | 23, 29, 48, 57, 79, 91, 98, 101, 115, 124 |
| abstract_inverted_index.use | 106 |
| abstract_inverted_index.This | 94 |
| abstract_inverted_index.also | 86 |
| abstract_inverted_index.best | 49 |
| abstract_inverted_index.cost | 112 |
| abstract_inverted_index.data | 83, 109 |
| abstract_inverted_index.even | 121 |
| abstract_inverted_index.less | 107 |
| abstract_inverted_index.like | 35 |
| abstract_inverted_index.only | 44 |
| abstract_inverted_index.some | 39 |
| abstract_inverted_index.than | 123 |
| abstract_inverted_index.that | 97 |
| abstract_inverted_index.them | 74 |
| abstract_inverted_index.this | 62 |
| abstract_inverted_index.upon | 51 |
| abstract_inverted_index.well | 118 |
| abstract_inverted_index.with | 90 |
| abstract_inverted_index.Bayes | 37 |
| abstract_inverted_index.based | 42 |
| abstract_inverted_index.novel | 5 |
| abstract_inverted_index.paper | 63, 95 |
| abstract_inverted_index.solve | 28 |
| abstract_inverted_index.task. | 54 |
| abstract_inverted_index.them, | 56 |
| abstract_inverted_index.which | 9 |
| abstract_inverted_index.Naïve | 36 |
| abstract_inverted_index.Unlike | 55 |
| abstract_inverted_index.better | 122 |
| abstract_inverted_index.demand | 80 |
| abstract_inverted_index.during | 14, 70 |
| abstract_inverted_index.enable | 22 |
| abstract_inverted_index.neural | 40 |
| abstract_inverted_index.single | 53 |
| abstract_inverted_index.tasks. | 77 |
| abstract_inverted_index.achieve | 47, 114 |
| abstract_inverted_index.focuses | 64 |
| abstract_inverted_index.further | 76 |
| abstract_inverted_index.machine | 1, 6, 25, 59 |
| abstract_inverted_index.network | 41 |
| abstract_inverted_index.related | 30 |
| abstract_inverted_index.reusing | 20 |
| abstract_inverted_index.Lifelong | 0 |
| abstract_inverted_index.labelled | 82, 108 |
| abstract_inverted_index.learning | 2, 7, 26, 60, 71, 103 |
| abstract_inverted_index.leverage | 73 |
| abstract_inverted_index.lifelong | 24, 58, 102 |
| abstract_inverted_index.paradigm | 8 |
| abstract_inverted_index.reusing. | 93 |
| abstract_inverted_index.suggests | 96 |
| abstract_inverted_index.training | 85 |
| abstract_inverted_index.abilities | 21 |
| abstract_inverted_index.decreased | 89 |
| abstract_inverted_index.knowledge | 13, 17, 69, 92 |
| abstract_inverted_index.learning. | 15, 126 |
| abstract_inverted_index.problems. | 31 |
| abstract_inverted_index.Meanwhile, | 78 |
| abstract_inverted_index.accumulate | 12, 68 |
| abstract_inverted_index.approaches | 34, 43 |
| abstract_inverted_index.extracting | 18 |
| abstract_inverted_index.supervised | 125 |
| abstract_inverted_index.continually | 11 |
| abstract_inverted_index.performance | 50, 116 |
| abstract_inverted_index.traditional | 33 |
| abstract_inverted_index.computational | 111 |
| abstract_inverted_index.significantly | 88 |
| cited_by_percentile_year | |
| countries_distinct_count | 2 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile |