SemIE: Semantically-aware Image Extrapolation Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.1109/iccv48922.2021.01463
We propose a semantically-aware novel paradigm to perform image extrapolation that enables the addition of new object instances. All previous methods are limited in their capability of extrapolation to merely extending the already existing objects in the image. However, our proposed approach focuses not only on (i) extending the already present objects but also on (ii) adding new objects in the extended region based on the context. To this end, for a given image, we first obtain an object segmentation map using a state-of-the-art semantic segmentation method. The, thus, obtained segmentation map is fed into a network to compute the extrapolated semantic segmentation and the corresponding panoptic segmentation maps. The input image and the obtained segmentation maps are further utilized to generate the final extrapolated image. We conduct experiments on Cityscapes and ADE20K-bedroom datasets and show that our method outperforms all baselines in terms of FID, and similarity in object co-occurrence statistics.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.1109/iccv48922.2021.01463
- OA Status
- green
- References
- 76
- Related Works
- 20
- OpenAlex ID
- https://openalex.org/W3198480601
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3198480601Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/iccv48922.2021.01463Digital Object Identifier
- Title
-
SemIE: Semantically-aware Image ExtrapolationWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-10-01Full publication date if available
- Authors
-
Bholeshwar Khurana, Soumya Ranjan Dash, Abhishek Bhatia, Aniruddha Mahapatra, Hrituraj Singh, Kuldeep KulkarniList of authors in order
- Landing page
-
https://doi.org/10.1109/iccv48922.2021.01463Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2108.13702Direct OA link when available
- Concepts
-
Extrapolation, Segmentation, Computer science, Artificial intelligence, Object (grammar), Scale-space segmentation, Image segmentation, Context (archaeology), Computer vision, Segmentation-based object categorization, Image (mathematics), Similarity (geometry), Pattern recognition (psychology), Mathematics, Geography, Statistics, ArchaeologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
76Number of works referenced by this work
- Related works (count)
-
20Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3198480601 |
|---|---|
| doi | https://doi.org/10.1109/iccv48922.2021.01463 |
| ids.doi | https://doi.org/10.48550/arxiv.2108.13702 |
| ids.mag | 3198480601 |
| ids.openalex | https://openalex.org/W3198480601 |
| fwci | 0.0 |
| type | preprint |
| title | SemIE: Semantically-aware Image Extrapolation |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 14909 |
| biblio.first_page | 14900 |
| topics[0].id | https://openalex.org/T10036 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9995999932289124 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Advanced Neural Network Applications |
| topics[1].id | https://openalex.org/T10627 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9987000226974487 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Advanced Image and Video Retrieval Techniques |
| topics[2].id | https://openalex.org/T10775 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9984999895095825 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Generative Adversarial Networks and Image Synthesis |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C132459708 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8328187465667725 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q744069 |
| concepts[0].display_name | Extrapolation |
| concepts[1].id | https://openalex.org/C89600930 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7575762271881104 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[1].display_name | Segmentation |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.7193676233291626 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.6629607677459717 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C2781238097 |
| concepts[4].level | 2 |
| concepts[4].score | 0.574205219745636 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q175026 |
| concepts[4].display_name | Object (grammar) |
| concepts[5].id | https://openalex.org/C65885262 |
| concepts[5].level | 4 |
| concepts[5].score | 0.5681867599487305 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7429708 |
| concepts[5].display_name | Scale-space segmentation |
| concepts[6].id | https://openalex.org/C124504099 |
| concepts[6].level | 3 |
| concepts[6].score | 0.557108461856842 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q56933 |
| concepts[6].display_name | Image segmentation |
| concepts[7].id | https://openalex.org/C2779343474 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5486468076705933 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q3109175 |
| concepts[7].display_name | Context (archaeology) |
| concepts[8].id | https://openalex.org/C31972630 |
| concepts[8].level | 1 |
| concepts[8].score | 0.5176197290420532 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[8].display_name | Computer vision |
| concepts[9].id | https://openalex.org/C25694479 |
| concepts[9].level | 5 |
| concepts[9].score | 0.5169371962547302 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7446278 |
| concepts[9].display_name | Segmentation-based object categorization |
| concepts[10].id | https://openalex.org/C115961682 |
| concepts[10].level | 2 |
| concepts[10].score | 0.5039328932762146 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[10].display_name | Image (mathematics) |
| concepts[11].id | https://openalex.org/C103278499 |
| concepts[11].level | 3 |
| concepts[11].score | 0.46606045961380005 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q254465 |
| concepts[11].display_name | Similarity (geometry) |
| concepts[12].id | https://openalex.org/C153180895 |
| concepts[12].level | 2 |
| concepts[12].score | 0.4236990213394165 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[12].display_name | Pattern recognition (psychology) |
| concepts[13].id | https://openalex.org/C33923547 |
| concepts[13].level | 0 |
| concepts[13].score | 0.18061530590057373 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[13].display_name | Mathematics |
| concepts[14].id | https://openalex.org/C205649164 |
| concepts[14].level | 0 |
| concepts[14].score | 0.11626315116882324 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[14].display_name | Geography |
| concepts[15].id | https://openalex.org/C105795698 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0560775101184845 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[15].display_name | Statistics |
| concepts[16].id | https://openalex.org/C166957645 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q23498 |
| concepts[16].display_name | Archaeology |
| keywords[0].id | https://openalex.org/keywords/extrapolation |
| keywords[0].score | 0.8328187465667725 |
| keywords[0].display_name | Extrapolation |
| keywords[1].id | https://openalex.org/keywords/segmentation |
| keywords[1].score | 0.7575762271881104 |
| keywords[1].display_name | Segmentation |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.7193676233291626 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.6629607677459717 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/object |
| keywords[4].score | 0.574205219745636 |
| keywords[4].display_name | Object (grammar) |
| keywords[5].id | https://openalex.org/keywords/scale-space-segmentation |
| keywords[5].score | 0.5681867599487305 |
| keywords[5].display_name | Scale-space segmentation |
| keywords[6].id | https://openalex.org/keywords/image-segmentation |
| keywords[6].score | 0.557108461856842 |
| keywords[6].display_name | Image segmentation |
| keywords[7].id | https://openalex.org/keywords/context |
| keywords[7].score | 0.5486468076705933 |
| keywords[7].display_name | Context (archaeology) |
| keywords[8].id | https://openalex.org/keywords/computer-vision |
| keywords[8].score | 0.5176197290420532 |
| keywords[8].display_name | Computer vision |
| keywords[9].id | https://openalex.org/keywords/segmentation-based-object-categorization |
| keywords[9].score | 0.5169371962547302 |
| keywords[9].display_name | Segmentation-based object categorization |
| keywords[10].id | https://openalex.org/keywords/image |
| keywords[10].score | 0.5039328932762146 |
| keywords[10].display_name | Image (mathematics) |
| keywords[11].id | https://openalex.org/keywords/similarity |
| keywords[11].score | 0.46606045961380005 |
| keywords[11].display_name | Similarity (geometry) |
| keywords[12].id | https://openalex.org/keywords/pattern-recognition |
| keywords[12].score | 0.4236990213394165 |
| keywords[12].display_name | Pattern recognition (psychology) |
| keywords[13].id | https://openalex.org/keywords/mathematics |
| keywords[13].score | 0.18061530590057373 |
| keywords[13].display_name | Mathematics |
| keywords[14].id | https://openalex.org/keywords/geography |
| keywords[14].score | 0.11626315116882324 |
| keywords[14].display_name | Geography |
| keywords[15].id | https://openalex.org/keywords/statistics |
| keywords[15].score | 0.0560775101184845 |
| keywords[15].display_name | Statistics |
| language | en |
| locations[0].id | doi:10.1109/iccv48922.2021.01463 |
| locations[0].is_oa | False |
| locations[0].source.id | https://openalex.org/S4363607764 |
| locations[0].source.issn | |
| locations[0].source.type | conference |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | 2021 IEEE/CVF International Conference on Computer Vision (ICCV) |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | 2021 IEEE/CVF International Conference on Computer Vision (ICCV) |
| locations[0].landing_page_url | https://doi.org/10.1109/iccv48922.2021.01463 |
| locations[1].id | pmh:oai:arXiv.org:2108.13702 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by-nc-sa |
| locations[1].pdf_url | https://arxiv.org/pdf/2108.13702 |
| locations[1].version | submittedVersion |
| locations[1].raw_type | text |
| locations[1].license_id | https://openalex.org/licenses/cc-by-nc-sa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | http://arxiv.org/abs/2108.13702 |
| locations[2].id | mag:3198480601 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400194 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | arXiv (Cornell University) |
| locations[2].source.host_organization | https://openalex.org/I205783295 |
| locations[2].source.host_organization_name | Cornell University |
| locations[2].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | arXiv (Cornell University) |
| locations[2].landing_page_url | http://export.arxiv.org/pdf/2108.13702 |
| locations[3].id | doi:10.48550/arxiv.2108.13702 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306400194 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | True |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | arXiv (Cornell University) |
| locations[3].source.host_organization | https://openalex.org/I205783295 |
| locations[3].source.host_organization_name | Cornell University |
| locations[3].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[3].license | |
| locations[3].pdf_url | |
| locations[3].version | |
| locations[3].raw_type | article |
| locations[3].license_id | |
| locations[3].is_accepted | False |
| locations[3].is_published | |
| locations[3].raw_source_name | |
| locations[3].landing_page_url | https://doi.org/10.48550/arxiv.2108.13702 |
| locations[4].id | mag:3202268330 |
| locations[4].is_oa | True |
| locations[4].source.id | https://openalex.org/S4306400194 |
| locations[4].source.issn | |
| locations[4].source.type | repository |
| locations[4].source.is_oa | True |
| locations[4].source.issn_l | |
| locations[4].source.is_core | False |
| locations[4].source.is_in_doaj | False |
| locations[4].source.display_name | arXiv (Cornell University) |
| locations[4].source.host_organization | https://openalex.org/I205783295 |
| locations[4].source.host_organization_name | Cornell University |
| locations[4].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[4].license | |
| locations[4].pdf_url | |
| locations[4].version | |
| locations[4].raw_type | |
| locations[4].license_id | |
| locations[4].is_accepted | False |
| locations[4].is_published | |
| locations[4].raw_source_name | arXiv (Cornell University) |
| locations[4].landing_page_url | https://arxiv.org/pdf/2108.13702 |
| indexed_in | arxiv, crossref, datacite |
| authorships[0].author.id | https://openalex.org/A5071480226 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Bholeshwar Khurana |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Bholeshwar Khurana |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5026446080 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-7267-6104 |
| authorships[1].author.display_name | Soumya Ranjan Dash |
| authorships[1].countries | IN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I179420787 |
| authorships[1].affiliations[0].raw_affiliation_string | Indian Council of Agricultural Research, New Delhi, India |
| authorships[1].institutions[0].id | https://openalex.org/I179420787 |
| authorships[1].institutions[0].ror | https://ror.org/04fw54a43 |
| authorships[1].institutions[0].type | government |
| authorships[1].institutions[0].lineage | https://openalex.org/I179420787 |
| authorships[1].institutions[0].country_code | IN |
| authorships[1].institutions[0].display_name | Indian Council of Agricultural Research |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Soumya Ranjan Dash |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Indian Council of Agricultural Research, New Delhi, India |
| authorships[2].author.id | https://openalex.org/A5050488765 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-0063-368X |
| authorships[2].author.display_name | Abhishek Bhatia |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Abhishek Bhatia |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5014836899 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-1480-7302 |
| authorships[3].author.display_name | Aniruddha Mahapatra |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Aniruddha Mahapatra |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5044442880 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-3705-120X |
| authorships[4].author.display_name | Hrituraj Singh |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Hrituraj Singh |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5077902428 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Kuldeep Kulkarni |
| authorships[5].countries | US |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I1306409833 |
| authorships[5].affiliations[0].raw_affiliation_string | Adobe Systems (United States), San Jose, United States |
| authorships[5].institutions[0].id | https://openalex.org/I1306409833 |
| authorships[5].institutions[0].ror | https://ror.org/059tvcg64 |
| authorships[5].institutions[0].type | company |
| authorships[5].institutions[0].lineage | https://openalex.org/I1306409833 |
| authorships[5].institutions[0].country_code | US |
| authorships[5].institutions[0].display_name | Adobe Systems (United States) |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Kuldeep Kulkarni |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Adobe Systems (United States), San Jose, United States |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2108.13702 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | SemIE: Semantically-aware Image Extrapolation |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10036 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9995999932289124 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Advanced Neural Network Applications |
| related_works | https://openalex.org/W3168495321, https://openalex.org/W2897407161, https://openalex.org/W3207483566, https://openalex.org/W2914865192, https://openalex.org/W2990995252, https://openalex.org/W1993820390, https://openalex.org/W2907744142, https://openalex.org/W2902978875, https://openalex.org/W2950629812, https://openalex.org/W2993790113, https://openalex.org/W130423592, https://openalex.org/W3189017736, https://openalex.org/W2950877941, https://openalex.org/W2963527409, https://openalex.org/W3013473128, https://openalex.org/W2971113548, https://openalex.org/W3084144594, https://openalex.org/W2963052201, https://openalex.org/W2994696483, https://openalex.org/W2959771705 |
| cited_by_count | 0 |
| locations_count | 5 |
| best_oa_location.id | pmh:oai:arXiv.org:2108.13702 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | cc-by-nc-sa |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2108.13702 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-sa |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2108.13702 |
| primary_location.id | doi:10.1109/iccv48922.2021.01463 |
| primary_location.is_oa | False |
| primary_location.source.id | https://openalex.org/S4363607764 |
| primary_location.source.issn | |
| primary_location.source.type | conference |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | 2021 IEEE/CVF International Conference on Computer Vision (ICCV) |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | 2021 IEEE/CVF International Conference on Computer Vision (ICCV) |
| primary_location.landing_page_url | https://doi.org/10.1109/iccv48922.2021.01463 |
| publication_date | 2021-10-01 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W6779803236, https://openalex.org/W2948627722, https://openalex.org/W6637373629, https://openalex.org/W6780043386, https://openalex.org/W2962974533, https://openalex.org/W3015643106, https://openalex.org/W2963800363, https://openalex.org/W6767271998, https://openalex.org/W6778231270, https://openalex.org/W6750942122, https://openalex.org/W6749927861, https://openalex.org/W2593414223, https://openalex.org/W6748582592, https://openalex.org/W6770712829, https://openalex.org/W6741832134, https://openalex.org/W2999219213, https://openalex.org/W6754259245, https://openalex.org/W6776140050, https://openalex.org/W6779841522, https://openalex.org/W6753552750, https://openalex.org/W6767457696, https://openalex.org/W6750997056, https://openalex.org/W6785936233, https://openalex.org/W2963201933, https://openalex.org/W6765779288, https://openalex.org/W6754120247, https://openalex.org/W6729966448, https://openalex.org/W6702130928, https://openalex.org/W3035574324, https://openalex.org/W6631190155, https://openalex.org/W6640963894, https://openalex.org/W3034355852, https://openalex.org/W1993120651, https://openalex.org/W6692550842, https://openalex.org/W2340897893, https://openalex.org/W1999360130, https://openalex.org/W6729881831, https://openalex.org/W2737258237, https://openalex.org/W2116013899, https://openalex.org/W6775845032, https://openalex.org/W6752378368, https://openalex.org/W2560023338, https://openalex.org/W3040932449, https://openalex.org/W2963917315, https://openalex.org/W3008062244, https://openalex.org/W3043547428, https://openalex.org/W3035339581, https://openalex.org/W3028392891, https://openalex.org/W2963073614, https://openalex.org/W2963981733, https://openalex.org/W2949399848, https://openalex.org/W3016719260, https://openalex.org/W2963351448, https://openalex.org/W2951004968, https://openalex.org/W1522301498, https://openalex.org/W3017141668, https://openalex.org/W3101956722, https://openalex.org/W2963601843, https://openalex.org/W2801693445, https://openalex.org/W2099471712, https://openalex.org/W1686810756, https://openalex.org/W2963174698, https://openalex.org/W2798365772, https://openalex.org/W2785678896, https://openalex.org/W3104026448, https://openalex.org/W2970955049, https://openalex.org/W2950905664, https://openalex.org/W2981828483, https://openalex.org/W2990690382, https://openalex.org/W2792263949, https://openalex.org/W2949808870, https://openalex.org/W3106147826, https://openalex.org/W3036656500, https://openalex.org/W2331128040, https://openalex.org/W2804078698, https://openalex.org/W2739748921 |
| referenced_works_count | 76 |
| abstract_inverted_index.a | 2, 71, 82, 95 |
| abstract_inverted_index.To | 67 |
| abstract_inverted_index.We | 0, 126 |
| abstract_inverted_index.an | 77 |
| abstract_inverted_index.in | 23, 35, 59, 142, 148 |
| abstract_inverted_index.is | 92 |
| abstract_inverted_index.of | 14, 26, 144 |
| abstract_inverted_index.on | 45, 54, 64, 129 |
| abstract_inverted_index.to | 6, 28, 97, 120 |
| abstract_inverted_index.we | 74 |
| abstract_inverted_index.(i) | 46 |
| abstract_inverted_index.All | 18 |
| abstract_inverted_index.The | 109 |
| abstract_inverted_index.all | 140 |
| abstract_inverted_index.and | 103, 112, 131, 134, 146 |
| abstract_inverted_index.are | 21, 117 |
| abstract_inverted_index.but | 52 |
| abstract_inverted_index.fed | 93 |
| abstract_inverted_index.for | 70 |
| abstract_inverted_index.map | 80, 91 |
| abstract_inverted_index.new | 15, 57 |
| abstract_inverted_index.not | 43 |
| abstract_inverted_index.our | 39, 137 |
| abstract_inverted_index.the | 12, 31, 36, 48, 60, 65, 99, 104, 113, 122 |
| abstract_inverted_index.(ii) | 55 |
| abstract_inverted_index.FID, | 145 |
| abstract_inverted_index.The, | 87 |
| abstract_inverted_index.also | 53 |
| abstract_inverted_index.end, | 69 |
| abstract_inverted_index.into | 94 |
| abstract_inverted_index.maps | 116 |
| abstract_inverted_index.only | 44 |
| abstract_inverted_index.show | 135 |
| abstract_inverted_index.that | 10, 136 |
| abstract_inverted_index.this | 68 |
| abstract_inverted_index.based | 63 |
| abstract_inverted_index.final | 123 |
| abstract_inverted_index.first | 75 |
| abstract_inverted_index.given | 72 |
| abstract_inverted_index.image | 8, 111 |
| abstract_inverted_index.input | 110 |
| abstract_inverted_index.maps. | 108 |
| abstract_inverted_index.novel | 4 |
| abstract_inverted_index.terms | 143 |
| abstract_inverted_index.their | 24 |
| abstract_inverted_index.thus, | 88 |
| abstract_inverted_index.using | 81 |
| abstract_inverted_index.adding | 56 |
| abstract_inverted_index.image, | 73 |
| abstract_inverted_index.image. | 37, 125 |
| abstract_inverted_index.merely | 29 |
| abstract_inverted_index.method | 138 |
| abstract_inverted_index.object | 16, 78, 149 |
| abstract_inverted_index.obtain | 76 |
| abstract_inverted_index.region | 62 |
| abstract_inverted_index.already | 32, 49 |
| abstract_inverted_index.compute | 98 |
| abstract_inverted_index.conduct | 127 |
| abstract_inverted_index.enables | 11 |
| abstract_inverted_index.focuses | 42 |
| abstract_inverted_index.further | 118 |
| abstract_inverted_index.limited | 22 |
| abstract_inverted_index.method. | 86 |
| abstract_inverted_index.methods | 20 |
| abstract_inverted_index.network | 96 |
| abstract_inverted_index.objects | 34, 51, 58 |
| abstract_inverted_index.perform | 7 |
| abstract_inverted_index.present | 50 |
| abstract_inverted_index.propose | 1 |
| abstract_inverted_index.However, | 38 |
| abstract_inverted_index.addition | 13 |
| abstract_inverted_index.approach | 41 |
| abstract_inverted_index.context. | 66 |
| abstract_inverted_index.datasets | 133 |
| abstract_inverted_index.existing | 33 |
| abstract_inverted_index.extended | 61 |
| abstract_inverted_index.generate | 121 |
| abstract_inverted_index.obtained | 89, 114 |
| abstract_inverted_index.panoptic | 106 |
| abstract_inverted_index.paradigm | 5 |
| abstract_inverted_index.previous | 19 |
| abstract_inverted_index.proposed | 40 |
| abstract_inverted_index.semantic | 84, 101 |
| abstract_inverted_index.utilized | 119 |
| abstract_inverted_index.baselines | 141 |
| abstract_inverted_index.extending | 30, 47 |
| abstract_inverted_index.Cityscapes | 130 |
| abstract_inverted_index.capability | 25 |
| abstract_inverted_index.instances. | 17 |
| abstract_inverted_index.similarity | 147 |
| abstract_inverted_index.experiments | 128 |
| abstract_inverted_index.outperforms | 139 |
| abstract_inverted_index.statistics. | 151 |
| abstract_inverted_index.extrapolated | 100, 124 |
| abstract_inverted_index.segmentation | 79, 85, 90, 102, 107, 115 |
| abstract_inverted_index.co-occurrence | 150 |
| abstract_inverted_index.corresponding | 105 |
| abstract_inverted_index.extrapolation | 9, 27 |
| abstract_inverted_index.ADE20K-bedroom | 132 |
| abstract_inverted_index.state-of-the-art | 83 |
| abstract_inverted_index.semantically-aware | 3 |
| cited_by_percentile_year | |
| countries_distinct_count | 2 |
| institutions_distinct_count | 6 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/11 |
| sustainable_development_goals[0].score | 0.8399999737739563 |
| sustainable_development_goals[0].display_name | Sustainable cities and communities |
| citation_normalized_percentile.value | 0.05911188 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |