Sensitivity Analysis for Gaussian-Associated Features Article Swipe
This paper is concerned with the evaluation of the uncertainties associated with Gaussian-associated features following the GUM methodology. We show how sensitivity matrices necessary for a GUM uncertainty evaluation can be calculated and how the variance matrices associated with the feature parameters can be estimated for a range of complete and partial features common in engineering. Example results are given in tables that allow practitioners to estimate, a priori, the uncertainties associated with fitted parameters, given a proposed measurement strategy for the case in which the point-cloud variance matrix is a multiple of the identity matrix. The sensitivity matrices can be used to evaluate the uncertainties for associated features for more general point-cloud variance matrices. All the calculations involved are direct and involve no optimization or Monte Carlo sampling; they can be implemented in spreadsheet software, for example.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/app12062808
- https://www.mdpi.com/2076-3417/12/6/2808/pdf?version=1646822083
- OA Status
- gold
- Cited By
- 6
- References
- 19
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4221032191
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4221032191Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/app12062808Digital Object Identifier
- Title
-
Sensitivity Analysis for Gaussian-Associated FeaturesWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-03-09Full publication date if available
- Authors
-
Alistair ForbesList of authors in order
- Landing page
-
https://doi.org/10.3390/app12062808Publisher landing page
- PDF URL
-
https://www.mdpi.com/2076-3417/12/6/2808/pdf?version=1646822083Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2076-3417/12/6/2808/pdf?version=1646822083Direct OA link when available
- Concepts
-
Variance (accounting), Sensitivity (control systems), Gaussian, A priori and a posteriori, Monte Carlo method, Computer science, Matrix (chemical analysis), Range (aeronautics), Algorithm, Mathematics, Data mining, Mathematical optimization, Statistics, Engineering, Aerospace engineering, Philosophy, Electronic engineering, Composite material, Quantum mechanics, Business, Materials science, Accounting, Epistemology, PhysicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
6Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 3, 2023: 1, 2022: 1Per-year citation counts (last 5 years)
- References (count)
-
19Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4221032191 |
|---|---|
| doi | https://doi.org/10.3390/app12062808 |
| ids.doi | https://doi.org/10.3390/app12062808 |
| ids.openalex | https://openalex.org/W4221032191 |
| fwci | 0.74189569 |
| type | article |
| title | Sensitivity Analysis for Gaussian-Associated Features |
| biblio.issue | 6 |
| biblio.volume | 12 |
| biblio.last_page | 2808 |
| biblio.first_page | 2808 |
| topics[0].id | https://openalex.org/T11583 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9973999857902527 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2210 |
| topics[0].subfield.display_name | Mechanical Engineering |
| topics[0].display_name | Advanced Measurement and Metrology Techniques |
| topics[1].id | https://openalex.org/T10638 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.992900013923645 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Optical measurement and interference techniques |
| topics[2].id | https://openalex.org/T11159 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9886000156402588 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2209 |
| topics[2].subfield.display_name | Industrial and Manufacturing Engineering |
| topics[2].display_name | Manufacturing Process and Optimization |
| is_xpac | False |
| apc_list.value | 2300 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2490 |
| apc_paid.value | 2300 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2490 |
| concepts[0].id | https://openalex.org/C196083921 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6578162908554077 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q7915758 |
| concepts[0].display_name | Variance (accounting) |
| concepts[1].id | https://openalex.org/C21200559 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6166434288024902 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q7451068 |
| concepts[1].display_name | Sensitivity (control systems) |
| concepts[2].id | https://openalex.org/C163716315 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5428329706192017 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q901177 |
| concepts[2].display_name | Gaussian |
| concepts[3].id | https://openalex.org/C75553542 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5005741119384766 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q178161 |
| concepts[3].display_name | A priori and a posteriori |
| concepts[4].id | https://openalex.org/C19499675 |
| concepts[4].level | 2 |
| concepts[4].score | 0.49269989132881165 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q232207 |
| concepts[4].display_name | Monte Carlo method |
| concepts[5].id | https://openalex.org/C41008148 |
| concepts[5].level | 0 |
| concepts[5].score | 0.48948991298675537 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[5].display_name | Computer science |
| concepts[6].id | https://openalex.org/C106487976 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4518893361091614 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q685816 |
| concepts[6].display_name | Matrix (chemical analysis) |
| concepts[7].id | https://openalex.org/C204323151 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4499283730983734 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q905424 |
| concepts[7].display_name | Range (aeronautics) |
| concepts[8].id | https://openalex.org/C11413529 |
| concepts[8].level | 1 |
| concepts[8].score | 0.423850417137146 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[8].display_name | Algorithm |
| concepts[9].id | https://openalex.org/C33923547 |
| concepts[9].level | 0 |
| concepts[9].score | 0.40503019094467163 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[9].display_name | Mathematics |
| concepts[10].id | https://openalex.org/C124101348 |
| concepts[10].level | 1 |
| concepts[10].score | 0.4027728736400604 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[10].display_name | Data mining |
| concepts[11].id | https://openalex.org/C126255220 |
| concepts[11].level | 1 |
| concepts[11].score | 0.3359746038913727 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q141495 |
| concepts[11].display_name | Mathematical optimization |
| concepts[12].id | https://openalex.org/C105795698 |
| concepts[12].level | 1 |
| concepts[12].score | 0.32271838188171387 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[12].display_name | Statistics |
| concepts[13].id | https://openalex.org/C127413603 |
| concepts[13].level | 0 |
| concepts[13].score | 0.14019903540611267 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[13].display_name | Engineering |
| concepts[14].id | https://openalex.org/C146978453 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q3798668 |
| concepts[14].display_name | Aerospace engineering |
| concepts[15].id | https://openalex.org/C138885662 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[15].display_name | Philosophy |
| concepts[16].id | https://openalex.org/C24326235 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q126095 |
| concepts[16].display_name | Electronic engineering |
| concepts[17].id | https://openalex.org/C159985019 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q181790 |
| concepts[17].display_name | Composite material |
| concepts[18].id | https://openalex.org/C62520636 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[18].display_name | Quantum mechanics |
| concepts[19].id | https://openalex.org/C144133560 |
| concepts[19].level | 0 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q4830453 |
| concepts[19].display_name | Business |
| concepts[20].id | https://openalex.org/C192562407 |
| concepts[20].level | 0 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[20].display_name | Materials science |
| concepts[21].id | https://openalex.org/C121955636 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q4116214 |
| concepts[21].display_name | Accounting |
| concepts[22].id | https://openalex.org/C111472728 |
| concepts[22].level | 1 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q9471 |
| concepts[22].display_name | Epistemology |
| concepts[23].id | https://openalex.org/C121332964 |
| concepts[23].level | 0 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[23].display_name | Physics |
| keywords[0].id | https://openalex.org/keywords/variance |
| keywords[0].score | 0.6578162908554077 |
| keywords[0].display_name | Variance (accounting) |
| keywords[1].id | https://openalex.org/keywords/sensitivity |
| keywords[1].score | 0.6166434288024902 |
| keywords[1].display_name | Sensitivity (control systems) |
| keywords[2].id | https://openalex.org/keywords/gaussian |
| keywords[2].score | 0.5428329706192017 |
| keywords[2].display_name | Gaussian |
| keywords[3].id | https://openalex.org/keywords/a-priori-and-a-posteriori |
| keywords[3].score | 0.5005741119384766 |
| keywords[3].display_name | A priori and a posteriori |
| keywords[4].id | https://openalex.org/keywords/monte-carlo-method |
| keywords[4].score | 0.49269989132881165 |
| keywords[4].display_name | Monte Carlo method |
| keywords[5].id | https://openalex.org/keywords/computer-science |
| keywords[5].score | 0.48948991298675537 |
| keywords[5].display_name | Computer science |
| keywords[6].id | https://openalex.org/keywords/matrix |
| keywords[6].score | 0.4518893361091614 |
| keywords[6].display_name | Matrix (chemical analysis) |
| keywords[7].id | https://openalex.org/keywords/range |
| keywords[7].score | 0.4499283730983734 |
| keywords[7].display_name | Range (aeronautics) |
| keywords[8].id | https://openalex.org/keywords/algorithm |
| keywords[8].score | 0.423850417137146 |
| keywords[8].display_name | Algorithm |
| keywords[9].id | https://openalex.org/keywords/mathematics |
| keywords[9].score | 0.40503019094467163 |
| keywords[9].display_name | Mathematics |
| keywords[10].id | https://openalex.org/keywords/data-mining |
| keywords[10].score | 0.4027728736400604 |
| keywords[10].display_name | Data mining |
| keywords[11].id | https://openalex.org/keywords/mathematical-optimization |
| keywords[11].score | 0.3359746038913727 |
| keywords[11].display_name | Mathematical optimization |
| keywords[12].id | https://openalex.org/keywords/statistics |
| keywords[12].score | 0.32271838188171387 |
| keywords[12].display_name | Statistics |
| keywords[13].id | https://openalex.org/keywords/engineering |
| keywords[13].score | 0.14019903540611267 |
| keywords[13].display_name | Engineering |
| language | en |
| locations[0].id | doi:10.3390/app12062808 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210205812 |
| locations[0].source.issn | 2076-3417 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2076-3417 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Applied Sciences |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2076-3417/12/6/2808/pdf?version=1646822083 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Applied Sciences |
| locations[0].landing_page_url | https://doi.org/10.3390/app12062808 |
| locations[1].id | pmh:oai:doaj.org/article:21d613828346445491756f9385e43b8a |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Applied Sciences, Vol 12, Iss 6, p 2808 (2022) |
| locations[1].landing_page_url | https://doaj.org/article/21d613828346445491756f9385e43b8a |
| locations[2].id | pmh:oai:mdpi.com:/2076-3417/12/6/2808/ |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400947 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | MDPI (MDPI AG) |
| locations[2].source.host_organization | https://openalex.org/I4210097602 |
| locations[2].source.host_organization_name | Multidisciplinary Digital Publishing Institute (Switzerland) |
| locations[2].source.host_organization_lineage | https://openalex.org/I4210097602 |
| locations[2].license | cc-by |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Applied Sciences; Volume 12; Issue 6; Pages: 2808 |
| locations[2].landing_page_url | https://dx.doi.org/10.3390/app12062808 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5083084249 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-6640-9691 |
| authorships[0].author.display_name | Alistair Forbes |
| authorships[0].countries | GB |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I134421475 |
| authorships[0].affiliations[0].raw_affiliation_string | National Physical Laboratory, Teddington, London TW11 0LW, UK |
| authorships[0].institutions[0].id | https://openalex.org/I134421475 |
| authorships[0].institutions[0].ror | https://ror.org/015w2mp89 |
| authorships[0].institutions[0].type | facility |
| authorships[0].institutions[0].lineage | https://openalex.org/I134421475 |
| authorships[0].institutions[0].country_code | GB |
| authorships[0].institutions[0].display_name | National Physical Laboratory |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Alistair Forbes |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | National Physical Laboratory, Teddington, London TW11 0LW, UK |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2076-3417/12/6/2808/pdf?version=1646822083 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Sensitivity Analysis for Gaussian-Associated Features |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11583 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9973999857902527 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2210 |
| primary_topic.subfield.display_name | Mechanical Engineering |
| primary_topic.display_name | Advanced Measurement and Metrology Techniques |
| related_works | https://openalex.org/W4388311650, https://openalex.org/W1974056099, https://openalex.org/W4245343541, https://openalex.org/W2386077341, https://openalex.org/W563589758, https://openalex.org/W5922282, https://openalex.org/W2954004777, https://openalex.org/W2949638731, https://openalex.org/W2951102138, https://openalex.org/W4299447939 |
| cited_by_count | 6 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 3 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 1 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 1 |
| locations_count | 3 |
| best_oa_location.id | doi:10.3390/app12062808 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210205812 |
| best_oa_location.source.issn | 2076-3417 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2076-3417 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Applied Sciences |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2076-3417/12/6/2808/pdf?version=1646822083 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Applied Sciences |
| best_oa_location.landing_page_url | https://doi.org/10.3390/app12062808 |
| primary_location.id | doi:10.3390/app12062808 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210205812 |
| primary_location.source.issn | 2076-3417 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2076-3417 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Applied Sciences |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2076-3417/12/6/2808/pdf?version=1646822083 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Applied Sciences |
| primary_location.landing_page_url | https://doi.org/10.3390/app12062808 |
| publication_date | 2022-03-09 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W4244159217, https://openalex.org/W2792600227, https://openalex.org/W2070539244, https://openalex.org/W2077676775, https://openalex.org/W2003754305, https://openalex.org/W2076948388, https://openalex.org/W3202771782, https://openalex.org/W3204142792, https://openalex.org/W657972686, https://openalex.org/W4391197160, https://openalex.org/W1619787994, https://openalex.org/W2482059038, https://openalex.org/W2018462997, https://openalex.org/W1987420617, https://openalex.org/W139497581, https://openalex.org/W2075788737, https://openalex.org/W2071794696, https://openalex.org/W2465509612, https://openalex.org/W4312258136 |
| referenced_works_count | 19 |
| abstract_inverted_index.a | 25, 46, 67, 76, 90 |
| abstract_inverted_index.We | 18 |
| abstract_inverted_index.be | 30, 43, 100, 131 |
| abstract_inverted_index.in | 54, 60, 83, 133 |
| abstract_inverted_index.is | 2, 89 |
| abstract_inverted_index.no | 123 |
| abstract_inverted_index.of | 7, 48, 92 |
| abstract_inverted_index.or | 125 |
| abstract_inverted_index.to | 65, 102 |
| abstract_inverted_index.All | 115 |
| abstract_inverted_index.GUM | 16, 26 |
| abstract_inverted_index.The | 96 |
| abstract_inverted_index.and | 32, 50, 121 |
| abstract_inverted_index.are | 58, 119 |
| abstract_inverted_index.can | 29, 42, 99, 130 |
| abstract_inverted_index.for | 24, 45, 80, 106, 109, 136 |
| abstract_inverted_index.how | 20, 33 |
| abstract_inverted_index.the | 5, 8, 15, 34, 39, 69, 81, 85, 93, 104, 116 |
| abstract_inverted_index.This | 0 |
| abstract_inverted_index.case | 82 |
| abstract_inverted_index.more | 110 |
| abstract_inverted_index.show | 19 |
| abstract_inverted_index.that | 62 |
| abstract_inverted_index.they | 129 |
| abstract_inverted_index.used | 101 |
| abstract_inverted_index.with | 4, 11, 38, 72 |
| abstract_inverted_index.Carlo | 127 |
| abstract_inverted_index.Monte | 126 |
| abstract_inverted_index.allow | 63 |
| abstract_inverted_index.given | 59, 75 |
| abstract_inverted_index.paper | 1 |
| abstract_inverted_index.range | 47 |
| abstract_inverted_index.which | 84 |
| abstract_inverted_index.common | 53 |
| abstract_inverted_index.direct | 120 |
| abstract_inverted_index.fitted | 73 |
| abstract_inverted_index.matrix | 88 |
| abstract_inverted_index.tables | 61 |
| abstract_inverted_index.Example | 56 |
| abstract_inverted_index.feature | 40 |
| abstract_inverted_index.general | 111 |
| abstract_inverted_index.involve | 122 |
| abstract_inverted_index.matrix. | 95 |
| abstract_inverted_index.partial | 51 |
| abstract_inverted_index.priori, | 68 |
| abstract_inverted_index.results | 57 |
| abstract_inverted_index.complete | 49 |
| abstract_inverted_index.evaluate | 103 |
| abstract_inverted_index.example. | 137 |
| abstract_inverted_index.features | 13, 52, 108 |
| abstract_inverted_index.identity | 94 |
| abstract_inverted_index.involved | 118 |
| abstract_inverted_index.matrices | 22, 36, 98 |
| abstract_inverted_index.multiple | 91 |
| abstract_inverted_index.proposed | 77 |
| abstract_inverted_index.strategy | 79 |
| abstract_inverted_index.variance | 35, 87, 113 |
| abstract_inverted_index.concerned | 3 |
| abstract_inverted_index.estimate, | 66 |
| abstract_inverted_index.estimated | 44 |
| abstract_inverted_index.following | 14 |
| abstract_inverted_index.matrices. | 114 |
| abstract_inverted_index.necessary | 23 |
| abstract_inverted_index.sampling; | 128 |
| abstract_inverted_index.software, | 135 |
| abstract_inverted_index.associated | 10, 37, 71, 107 |
| abstract_inverted_index.calculated | 31 |
| abstract_inverted_index.evaluation | 6, 28 |
| abstract_inverted_index.parameters | 41 |
| abstract_inverted_index.implemented | 132 |
| abstract_inverted_index.measurement | 78 |
| abstract_inverted_index.parameters, | 74 |
| abstract_inverted_index.point-cloud | 86, 112 |
| abstract_inverted_index.sensitivity | 21, 97 |
| abstract_inverted_index.spreadsheet | 134 |
| abstract_inverted_index.uncertainty | 27 |
| abstract_inverted_index.calculations | 117 |
| abstract_inverted_index.engineering. | 55 |
| abstract_inverted_index.methodology. | 17 |
| abstract_inverted_index.optimization | 124 |
| abstract_inverted_index.practitioners | 64 |
| abstract_inverted_index.uncertainties | 9, 70, 105 |
| abstract_inverted_index.Gaussian-associated | 12 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 89 |
| corresponding_author_ids | https://openalex.org/A5083084249 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 1 |
| corresponding_institution_ids | https://openalex.org/I134421475 |
| citation_normalized_percentile.value | 0.61970884 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |