Sensitivity Analysis of Observation Points in Local Weather Data Assimilation Article Swipe
YOU?
·
· 2018
· Open Access
·
· DOI: https://doi.org/10.1299/jsmecmd.2018.31.130
We investigated the impact of observation position for data assimilation using sensitivity analysis. The impact of observation position was evaluated by an observability index proposed by Kang et al. (2009). We conducted an identical twin experiment to evaluate the assimilated results using the WRF forecasting model. Three-dimensional variational data assimilation (3D-VAR) method was employed to assimilate observations of wind, whose locations were selected based on the observability index. The empirical observability Gramian matrix composed from time series of model outputs was used to obtain a map of observability index in the WRF domain. The results showed the correlation between the improvement of accuracy and the map of the observability index in the case where one observation was considered.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1299/jsmecmd.2018.31.130
- OA Status
- diamond
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2945101001
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2945101001Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1299/jsmecmd.2018.31.130Digital Object Identifier
- Title
-
Sensitivity Analysis of Observation Points in Local Weather Data AssimilationWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2018Year of publication
- Publication date
-
2018-01-01Full publication date if available
- Authors
-
R. Yoshimura, Takashi Misaka, Aiko Yakeno, Shigeru Obayashi, Masamichi NakamuraList of authors in order
- Landing page
-
https://doi.org/10.1299/jsmecmd.2018.31.130Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1299/jsmecmd.2018.31.130Direct OA link when available
- Concepts
-
Observability, Data assimilation, Weather Research and Forecasting Model, Sensitivity (control systems), Mathematics, Position (finance), Gramian matrix, Index (typography), Meteorology, Computer science, Applied mathematics, Geography, Physics, Engineering, Economics, Electronic engineering, Finance, World Wide Web, Eigenvalues and eigenvectors, Quantum mechanicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2945101001 |
|---|---|
| doi | https://doi.org/10.1299/jsmecmd.2018.31.130 |
| ids.doi | https://doi.org/10.1299/jsmecmd.2018.31.130 |
| ids.mag | 2945101001 |
| ids.openalex | https://openalex.org/W2945101001 |
| fwci | 0.0 |
| type | article |
| title | Sensitivity Analysis of Observation Points in Local Weather Data Assimilation |
| biblio.issue | 0 |
| biblio.volume | 2018.31 |
| biblio.last_page | 130 |
| biblio.first_page | 130 |
| topics[0].id | https://openalex.org/T10466 |
| topics[0].field.id | https://openalex.org/fields/19 |
| topics[0].field.display_name | Earth and Planetary Sciences |
| topics[0].score | 0.9970999956130981 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1902 |
| topics[0].subfield.display_name | Atmospheric Science |
| topics[0].display_name | Meteorological Phenomena and Simulations |
| topics[1].id | https://openalex.org/T10029 |
| topics[1].field.id | https://openalex.org/fields/23 |
| topics[1].field.display_name | Environmental Science |
| topics[1].score | 0.9853000044822693 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2306 |
| topics[1].subfield.display_name | Global and Planetary Change |
| topics[1].display_name | Climate variability and models |
| topics[2].id | https://openalex.org/T11052 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9728999733924866 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2208 |
| topics[2].subfield.display_name | Electrical and Electronic Engineering |
| topics[2].display_name | Energy Load and Power Forecasting |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C36299963 |
| concepts[0].level | 2 |
| concepts[0].score | 0.935964047908783 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1369844 |
| concepts[0].display_name | Observability |
| concepts[1].id | https://openalex.org/C24552861 |
| concepts[1].level | 2 |
| concepts[1].score | 0.8239699006080627 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2670177 |
| concepts[1].display_name | Data assimilation |
| concepts[2].id | https://openalex.org/C133204551 |
| concepts[2].level | 2 |
| concepts[2].score | 0.710157573223114 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q838305 |
| concepts[2].display_name | Weather Research and Forecasting Model |
| concepts[3].id | https://openalex.org/C21200559 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6330638527870178 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7451068 |
| concepts[3].display_name | Sensitivity (control systems) |
| concepts[4].id | https://openalex.org/C33923547 |
| concepts[4].level | 0 |
| concepts[4].score | 0.5494739413261414 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[4].display_name | Mathematics |
| concepts[5].id | https://openalex.org/C198082294 |
| concepts[5].level | 2 |
| concepts[5].score | 0.46982312202453613 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q3399648 |
| concepts[5].display_name | Position (finance) |
| concepts[6].id | https://openalex.org/C77246614 |
| concepts[6].level | 3 |
| concepts[6].score | 0.43538898229599 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1409400 |
| concepts[6].display_name | Gramian matrix |
| concepts[7].id | https://openalex.org/C2777382242 |
| concepts[7].level | 2 |
| concepts[7].score | 0.41282904148101807 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q6017816 |
| concepts[7].display_name | Index (typography) |
| concepts[8].id | https://openalex.org/C153294291 |
| concepts[8].level | 1 |
| concepts[8].score | 0.39323073625564575 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q25261 |
| concepts[8].display_name | Meteorology |
| concepts[9].id | https://openalex.org/C41008148 |
| concepts[9].level | 0 |
| concepts[9].score | 0.27975529432296753 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[9].display_name | Computer science |
| concepts[10].id | https://openalex.org/C28826006 |
| concepts[10].level | 1 |
| concepts[10].score | 0.2525262236595154 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q33521 |
| concepts[10].display_name | Applied mathematics |
| concepts[11].id | https://openalex.org/C205649164 |
| concepts[11].level | 0 |
| concepts[11].score | 0.17922213673591614 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[11].display_name | Geography |
| concepts[12].id | https://openalex.org/C121332964 |
| concepts[12].level | 0 |
| concepts[12].score | 0.09638741612434387 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[12].display_name | Physics |
| concepts[13].id | https://openalex.org/C127413603 |
| concepts[13].level | 0 |
| concepts[13].score | 0.08415085077285767 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[13].display_name | Engineering |
| concepts[14].id | https://openalex.org/C162324750 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[14].display_name | Economics |
| concepts[15].id | https://openalex.org/C24326235 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q126095 |
| concepts[15].display_name | Electronic engineering |
| concepts[16].id | https://openalex.org/C10138342 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q43015 |
| concepts[16].display_name | Finance |
| concepts[17].id | https://openalex.org/C136764020 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q466 |
| concepts[17].display_name | World Wide Web |
| concepts[18].id | https://openalex.org/C158693339 |
| concepts[18].level | 2 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q190524 |
| concepts[18].display_name | Eigenvalues and eigenvectors |
| concepts[19].id | https://openalex.org/C62520636 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[19].display_name | Quantum mechanics |
| keywords[0].id | https://openalex.org/keywords/observability |
| keywords[0].score | 0.935964047908783 |
| keywords[0].display_name | Observability |
| keywords[1].id | https://openalex.org/keywords/data-assimilation |
| keywords[1].score | 0.8239699006080627 |
| keywords[1].display_name | Data assimilation |
| keywords[2].id | https://openalex.org/keywords/weather-research-and-forecasting-model |
| keywords[2].score | 0.710157573223114 |
| keywords[2].display_name | Weather Research and Forecasting Model |
| keywords[3].id | https://openalex.org/keywords/sensitivity |
| keywords[3].score | 0.6330638527870178 |
| keywords[3].display_name | Sensitivity (control systems) |
| keywords[4].id | https://openalex.org/keywords/mathematics |
| keywords[4].score | 0.5494739413261414 |
| keywords[4].display_name | Mathematics |
| keywords[5].id | https://openalex.org/keywords/position |
| keywords[5].score | 0.46982312202453613 |
| keywords[5].display_name | Position (finance) |
| keywords[6].id | https://openalex.org/keywords/gramian-matrix |
| keywords[6].score | 0.43538898229599 |
| keywords[6].display_name | Gramian matrix |
| keywords[7].id | https://openalex.org/keywords/index |
| keywords[7].score | 0.41282904148101807 |
| keywords[7].display_name | Index (typography) |
| keywords[8].id | https://openalex.org/keywords/meteorology |
| keywords[8].score | 0.39323073625564575 |
| keywords[8].display_name | Meteorology |
| keywords[9].id | https://openalex.org/keywords/computer-science |
| keywords[9].score | 0.27975529432296753 |
| keywords[9].display_name | Computer science |
| keywords[10].id | https://openalex.org/keywords/applied-mathematics |
| keywords[10].score | 0.2525262236595154 |
| keywords[10].display_name | Applied mathematics |
| keywords[11].id | https://openalex.org/keywords/geography |
| keywords[11].score | 0.17922213673591614 |
| keywords[11].display_name | Geography |
| keywords[12].id | https://openalex.org/keywords/physics |
| keywords[12].score | 0.09638741612434387 |
| keywords[12].display_name | Physics |
| keywords[13].id | https://openalex.org/keywords/engineering |
| keywords[13].score | 0.08415085077285767 |
| keywords[13].display_name | Engineering |
| language | en |
| locations[0].id | doi:10.1299/jsmecmd.2018.31.130 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210233820 |
| locations[0].source.issn | 1348-026X, 2424-2799 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1348-026X |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Keisan Rikigaku Koenkai koen ronbunshu/Keisan Rikigaku Kouenkai kouen rombunshuu |
| locations[0].source.host_organization | https://openalex.org/P4322614513 |
| locations[0].source.host_organization_name | The Japan Society of Mechanical Engineers |
| locations[0].source.host_organization_lineage | https://openalex.org/P4322614513 |
| locations[0].source.host_organization_lineage_names | The Japan Society of Mechanical Engineers |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | The Proceedings of The Computational Mechanics Conference |
| locations[0].landing_page_url | https://doi.org/10.1299/jsmecmd.2018.31.130 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5009492718 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-1001-0571 |
| authorships[0].author.display_name | R. Yoshimura |
| authorships[0].countries | JP |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I201537933 |
| authorships[0].affiliations[0].raw_affiliation_string | IFS, Tohoku University |
| authorships[0].institutions[0].id | https://openalex.org/I201537933 |
| authorships[0].institutions[0].ror | https://ror.org/01dq60k83 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I201537933 |
| authorships[0].institutions[0].country_code | JP |
| authorships[0].institutions[0].display_name | Tohoku University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ryoichi YOSHIMURA |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | IFS, Tohoku University |
| authorships[1].author.id | https://openalex.org/A5057506250 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-6808-400X |
| authorships[1].author.display_name | Takashi Misaka |
| authorships[1].countries | JP |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I73613424 |
| authorships[1].affiliations[0].raw_affiliation_string | National Institute of Advanced Industrial Science and Technology |
| authorships[1].institutions[0].id | https://openalex.org/I73613424 |
| authorships[1].institutions[0].ror | https://ror.org/01703db54 |
| authorships[1].institutions[0].type | government |
| authorships[1].institutions[0].lineage | https://openalex.org/I73613424 |
| authorships[1].institutions[0].country_code | JP |
| authorships[1].institutions[0].display_name | National Institute of Advanced Industrial Science and Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Takashi MISAKA |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | National Institute of Advanced Industrial Science and Technology |
| authorships[2].author.id | https://openalex.org/A5025275963 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-1440-2417 |
| authorships[2].author.display_name | Aiko Yakeno |
| authorships[2].countries | JP |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I201537933 |
| authorships[2].affiliations[0].raw_affiliation_string | IFS, Tohoku University |
| authorships[2].institutions[0].id | https://openalex.org/I201537933 |
| authorships[2].institutions[0].ror | https://ror.org/01dq60k83 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I201537933 |
| authorships[2].institutions[0].country_code | JP |
| authorships[2].institutions[0].display_name | Tohoku University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Aiko YAKENO |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | IFS, Tohoku University |
| authorships[3].author.id | https://openalex.org/A5009004761 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-3876-1908 |
| authorships[3].author.display_name | Shigeru Obayashi |
| authorships[3].countries | JP |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I201537933 |
| authorships[3].affiliations[0].raw_affiliation_string | IFS, Tohoku University |
| authorships[3].institutions[0].id | https://openalex.org/I201537933 |
| authorships[3].institutions[0].ror | https://ror.org/01dq60k83 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I201537933 |
| authorships[3].institutions[0].country_code | JP |
| authorships[3].institutions[0].display_name | Tohoku University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Shigeru OBAYASHI |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | IFS, Tohoku University |
| authorships[4].author.id | https://openalex.org/A5110482548 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Masamichi Nakamura |
| authorships[4].countries | JP |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I65143321 |
| authorships[4].affiliations[0].raw_affiliation_string | Hitachi, Ltd. |
| authorships[4].institutions[0].id | https://openalex.org/I65143321 |
| authorships[4].institutions[0].ror | https://ror.org/02exqgm79 |
| authorships[4].institutions[0].type | company |
| authorships[4].institutions[0].lineage | https://openalex.org/I65143321 |
| authorships[4].institutions[0].country_code | JP |
| authorships[4].institutions[0].display_name | Hitachi (Japan) |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Masamichi NAKAMURA |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Hitachi, Ltd. |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1299/jsmecmd.2018.31.130 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Sensitivity Analysis of Observation Points in Local Weather Data Assimilation |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10466 |
| primary_topic.field.id | https://openalex.org/fields/19 |
| primary_topic.field.display_name | Earth and Planetary Sciences |
| primary_topic.score | 0.9970999956130981 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1902 |
| primary_topic.subfield.display_name | Atmospheric Science |
| primary_topic.display_name | Meteorological Phenomena and Simulations |
| related_works | https://openalex.org/W2046459260, https://openalex.org/W2967463586, https://openalex.org/W2765830098, https://openalex.org/W2153520047, https://openalex.org/W176642733, https://openalex.org/W2046976544, https://openalex.org/W2735450251, https://openalex.org/W2577309101, https://openalex.org/W2205194505, https://openalex.org/W4297797687 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1299/jsmecmd.2018.31.130 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210233820 |
| best_oa_location.source.issn | 1348-026X, 2424-2799 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1348-026X |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Keisan Rikigaku Koenkai koen ronbunshu/Keisan Rikigaku Kouenkai kouen rombunshuu |
| best_oa_location.source.host_organization | https://openalex.org/P4322614513 |
| best_oa_location.source.host_organization_name | The Japan Society of Mechanical Engineers |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4322614513 |
| best_oa_location.source.host_organization_lineage_names | The Japan Society of Mechanical Engineers |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | The Proceedings of The Computational Mechanics Conference |
| best_oa_location.landing_page_url | https://doi.org/10.1299/jsmecmd.2018.31.130 |
| primary_location.id | doi:10.1299/jsmecmd.2018.31.130 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210233820 |
| primary_location.source.issn | 1348-026X, 2424-2799 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1348-026X |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Keisan Rikigaku Koenkai koen ronbunshu/Keisan Rikigaku Kouenkai kouen rombunshuu |
| primary_location.source.host_organization | https://openalex.org/P4322614513 |
| primary_location.source.host_organization_name | The Japan Society of Mechanical Engineers |
| primary_location.source.host_organization_lineage | https://openalex.org/P4322614513 |
| primary_location.source.host_organization_lineage_names | The Japan Society of Mechanical Engineers |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | The Proceedings of The Computational Mechanics Conference |
| primary_location.landing_page_url | https://doi.org/10.1299/jsmecmd.2018.31.130 |
| publication_date | 2018-01-01 |
| publication_year | 2018 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 84 |
| abstract_inverted_index.We | 0, 30 |
| abstract_inverted_index.an | 21, 32 |
| abstract_inverted_index.by | 20, 25 |
| abstract_inverted_index.et | 27 |
| abstract_inverted_index.in | 89, 110 |
| abstract_inverted_index.of | 4, 15, 57, 77, 86, 101, 106 |
| abstract_inverted_index.on | 64 |
| abstract_inverted_index.to | 36, 54, 82 |
| abstract_inverted_index.The | 13, 68, 93 |
| abstract_inverted_index.WRF | 43, 91 |
| abstract_inverted_index.al. | 28 |
| abstract_inverted_index.and | 103 |
| abstract_inverted_index.for | 7 |
| abstract_inverted_index.map | 85, 105 |
| abstract_inverted_index.one | 114 |
| abstract_inverted_index.the | 2, 38, 42, 65, 90, 96, 99, 104, 107, 111 |
| abstract_inverted_index.was | 18, 52, 80, 116 |
| abstract_inverted_index.Kang | 26 |
| abstract_inverted_index.case | 112 |
| abstract_inverted_index.data | 8, 48 |
| abstract_inverted_index.from | 74 |
| abstract_inverted_index.time | 75 |
| abstract_inverted_index.twin | 34 |
| abstract_inverted_index.used | 81 |
| abstract_inverted_index.were | 61 |
| abstract_inverted_index.based | 63 |
| abstract_inverted_index.index | 23, 88, 109 |
| abstract_inverted_index.model | 78 |
| abstract_inverted_index.using | 10, 41 |
| abstract_inverted_index.where | 113 |
| abstract_inverted_index.whose | 59 |
| abstract_inverted_index.wind, | 58 |
| abstract_inverted_index.impact | 3, 14 |
| abstract_inverted_index.index. | 67 |
| abstract_inverted_index.matrix | 72 |
| abstract_inverted_index.method | 51 |
| abstract_inverted_index.model. | 45 |
| abstract_inverted_index.obtain | 83 |
| abstract_inverted_index.series | 76 |
| abstract_inverted_index.showed | 95 |
| abstract_inverted_index.(2009). | 29 |
| abstract_inverted_index.Gramian | 71 |
| abstract_inverted_index.between | 98 |
| abstract_inverted_index.domain. | 92 |
| abstract_inverted_index.outputs | 79 |
| abstract_inverted_index.results | 40, 94 |
| abstract_inverted_index.(3D-VAR) | 50 |
| abstract_inverted_index.accuracy | 102 |
| abstract_inverted_index.composed | 73 |
| abstract_inverted_index.employed | 53 |
| abstract_inverted_index.evaluate | 37 |
| abstract_inverted_index.position | 6, 17 |
| abstract_inverted_index.proposed | 24 |
| abstract_inverted_index.selected | 62 |
| abstract_inverted_index.analysis. | 12 |
| abstract_inverted_index.conducted | 31 |
| abstract_inverted_index.empirical | 69 |
| abstract_inverted_index.evaluated | 19 |
| abstract_inverted_index.identical | 33 |
| abstract_inverted_index.locations | 60 |
| abstract_inverted_index.assimilate | 55 |
| abstract_inverted_index.experiment | 35 |
| abstract_inverted_index.assimilated | 39 |
| abstract_inverted_index.considered. | 117 |
| abstract_inverted_index.correlation | 97 |
| abstract_inverted_index.forecasting | 44 |
| abstract_inverted_index.improvement | 100 |
| abstract_inverted_index.observation | 5, 16, 115 |
| abstract_inverted_index.sensitivity | 11 |
| abstract_inverted_index.variational | 47 |
| abstract_inverted_index.assimilation | 9, 49 |
| abstract_inverted_index.investigated | 1 |
| abstract_inverted_index.observations | 56 |
| abstract_inverted_index.observability | 22, 66, 70, 87, 108 |
| abstract_inverted_index.Three-dimensional | 46 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/13 |
| sustainable_development_goals[0].score | 0.7699999809265137 |
| sustainable_development_goals[0].display_name | Climate action |
| citation_normalized_percentile.value | 0.151555 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |