Sensitivity-Driven Deep Learning Model for Tribological Prediction in Al7075/B4C Nanocomposites Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.21203/rs.3.rs-8189627/v1
The development of lightweight, durable composites for industrial use is constrained by traditional tribological evaluation methods that are costly, time-consuming, and inadequate for capturing nonlinear interactions between material and operational parameters. This study proposes an integrated framework combining Global Sensitivity Analysis (GSA) and Machine Learning (ML) to predict the coefficient of friction (COF) and wear rate in Al7075/B4C nanocomposites. Four GSA techniques - Sobol indices, delta index, PAWN index, and mutual information - were employed to rank the significance of input parameters, including applied load, B4C reinforcement percentage, time, sliding velocity, and sliding distance. Using 10,800 experimental records from pin-on-disc tests, a Deep Residual Regression Network (DRRN) was developed to model tribological behavior. The Al7075 matrix was reinforced with boron carbide (B4C) particles at weight fractions of 0%, 4%, 8%, and 12%. Results show that B4C reinforcement significantly enhances wear resistance, with the 12% B4C composite reducing wear rate by 77% under severe conditions. The proposed framework achieved high predictive accuracy (R² = 0.93 for COF, 0.99 for wear rate).
Related Topics
- Type
- article
- Landing Page
- https://doi.org/10.21203/rs.3.rs-8189627/v1
- https://www.researchsquare.com/article/rs-8189627/latest.pdf
- OA Status
- gold
- OpenAlex ID
- https://openalex.org/W7106620459
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W7106620459Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.21203/rs.3.rs-8189627/v1Digital Object Identifier
- Title
-
Sensitivity-Driven Deep Learning Model for Tribological Prediction in Al7075/B4C NanocompositesWork title
- Type
-
articleOpenAlex work type
- Publication year
-
2025Year of publication
- Publication date
-
2025-11-25Full publication date if available
- Authors
-
Ranjeet Kumbhar, Appaso M. Gadade, Rajmeet Singh, Divyanshi R KumarList of authors in order
- Landing page
-
https://doi.org/10.21203/rs.3.rs-8189627/v1Publisher landing page
- PDF URL
-
https://www.researchsquare.com/article/rs-8189627/latest.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.researchsquare.com/article/rs-8189627/latest.pdfDirect OA link when available
- Concepts
-
Boron carbide, Tribology, Materials science, Composite material, Composite number, Sensitivity (control systems), Residual, Reinforcement, Bearing (navigation), Boron nitride, Sobol sequence, Friction coefficient, Nonlinear system, Carbide, Reinforcement learning, Artificial intelligence, Matrix (chemical analysis), Coefficient of friction, Machine learning, Silicon carbide, Deep learning, Artificial neural network, Composite laminates, Nanocomposite, Mechanical engineering, High dimensional, Reliability (semiconductor)Top concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W7106620459 |
|---|---|
| doi | https://doi.org/10.21203/rs.3.rs-8189627/v1 |
| ids.doi | https://doi.org/10.21203/rs.3.rs-8189627/v1 |
| ids.openalex | https://openalex.org/W7106620459 |
| fwci | 0.0 |
| type | article |
| title | Sensitivity-Driven Deep Learning Model for Tribological Prediction in Al7075/B4C Nanocomposites |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2778794521 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8845151662826538 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q417399 |
| concepts[0].display_name | Boron carbide |
| concepts[1].id | https://openalex.org/C167310744 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7563680410385132 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q193870 |
| concepts[1].display_name | Tribology |
| concepts[2].id | https://openalex.org/C192562407 |
| concepts[2].level | 0 |
| concepts[2].score | 0.7031288743019104 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[2].display_name | Materials science |
| concepts[3].id | https://openalex.org/C159985019 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5020281076431274 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q181790 |
| concepts[3].display_name | Composite material |
| concepts[4].id | https://openalex.org/C104779481 |
| concepts[4].level | 2 |
| concepts[4].score | 0.45531484484672546 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q50707 |
| concepts[4].display_name | Composite number |
| concepts[5].id | https://openalex.org/C21200559 |
| concepts[5].level | 2 |
| concepts[5].score | 0.45370522141456604 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7451068 |
| concepts[5].display_name | Sensitivity (control systems) |
| concepts[6].id | https://openalex.org/C155512373 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4176770746707916 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q287450 |
| concepts[6].display_name | Residual |
| concepts[7].id | https://openalex.org/C67203356 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4058522582054138 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1321905 |
| concepts[7].display_name | Reinforcement |
| concepts[8].id | https://openalex.org/C199978012 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4026215374469757 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1273815 |
| concepts[8].display_name | Bearing (navigation) |
| concepts[9].id | https://openalex.org/C2780243435 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4023549258708954 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q410193 |
| concepts[9].display_name | Boron nitride |
| concepts[10].id | https://openalex.org/C49740808 |
| concepts[10].level | 3 |
| concepts[10].score | 0.39253464341163635 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7550116 |
| concepts[10].display_name | Sobol sequence |
| concepts[11].id | https://openalex.org/C2989152160 |
| concepts[11].level | 2 |
| concepts[11].score | 0.38196277618408203 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q82580 |
| concepts[11].display_name | Friction coefficient |
| concepts[12].id | https://openalex.org/C158622935 |
| concepts[12].level | 2 |
| concepts[12].score | 0.3489067852497101 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q660848 |
| concepts[12].display_name | Nonlinear system |
| concepts[13].id | https://openalex.org/C5335593 |
| concepts[13].level | 2 |
| concepts[13].score | 0.34881797432899475 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q241906 |
| concepts[13].display_name | Carbide |
| concepts[14].id | https://openalex.org/C97541855 |
| concepts[14].level | 2 |
| concepts[14].score | 0.34214022755622864 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q830687 |
| concepts[14].display_name | Reinforcement learning |
| concepts[15].id | https://openalex.org/C154945302 |
| concepts[15].level | 1 |
| concepts[15].score | 0.339177668094635 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[15].display_name | Artificial intelligence |
| concepts[16].id | https://openalex.org/C106487976 |
| concepts[16].level | 2 |
| concepts[16].score | 0.3211086392402649 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q685816 |
| concepts[16].display_name | Matrix (chemical analysis) |
| concepts[17].id | https://openalex.org/C2987692278 |
| concepts[17].level | 2 |
| concepts[17].score | 0.3192930221557617 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q82580 |
| concepts[17].display_name | Coefficient of friction |
| concepts[18].id | https://openalex.org/C119857082 |
| concepts[18].level | 1 |
| concepts[18].score | 0.31705859303474426 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[18].display_name | Machine learning |
| concepts[19].id | https://openalex.org/C2780722187 |
| concepts[19].level | 2 |
| concepts[19].score | 0.28947094082832336 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q412356 |
| concepts[19].display_name | Silicon carbide |
| concepts[20].id | https://openalex.org/C108583219 |
| concepts[20].level | 2 |
| concepts[20].score | 0.28530848026275635 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[20].display_name | Deep learning |
| concepts[21].id | https://openalex.org/C50644808 |
| concepts[21].level | 2 |
| concepts[21].score | 0.2852102220058441 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[21].display_name | Artificial neural network |
| concepts[22].id | https://openalex.org/C145922259 |
| concepts[22].level | 3 |
| concepts[22].score | 0.2705126702785492 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q5156763 |
| concepts[22].display_name | Composite laminates |
| concepts[23].id | https://openalex.org/C92880739 |
| concepts[23].level | 2 |
| concepts[23].score | 0.26958757638931274 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q2639556 |
| concepts[23].display_name | Nanocomposite |
| concepts[24].id | https://openalex.org/C78519656 |
| concepts[24].level | 1 |
| concepts[24].score | 0.2662358582019806 |
| concepts[24].wikidata | https://www.wikidata.org/wiki/Q101333 |
| concepts[24].display_name | Mechanical engineering |
| concepts[25].id | https://openalex.org/C3019722297 |
| concepts[25].level | 2 |
| concepts[25].score | 0.25656968355178833 |
| concepts[25].wikidata | https://www.wikidata.org/wiki/Q4440864 |
| concepts[25].display_name | High dimensional |
| concepts[26].id | https://openalex.org/C43214815 |
| concepts[26].level | 3 |
| concepts[26].score | 0.2544850707054138 |
| concepts[26].wikidata | https://www.wikidata.org/wiki/Q7310987 |
| concepts[26].display_name | Reliability (semiconductor) |
| keywords[0].id | https://openalex.org/keywords/boron-carbide |
| keywords[0].score | 0.8845151662826538 |
| keywords[0].display_name | Boron carbide |
| keywords[1].id | https://openalex.org/keywords/tribology |
| keywords[1].score | 0.7563680410385132 |
| keywords[1].display_name | Tribology |
| keywords[2].id | https://openalex.org/keywords/composite-number |
| keywords[2].score | 0.45531484484672546 |
| keywords[2].display_name | Composite number |
| keywords[3].id | https://openalex.org/keywords/sensitivity |
| keywords[3].score | 0.45370522141456604 |
| keywords[3].display_name | Sensitivity (control systems) |
| keywords[4].id | https://openalex.org/keywords/residual |
| keywords[4].score | 0.4176770746707916 |
| keywords[4].display_name | Residual |
| keywords[5].id | https://openalex.org/keywords/reinforcement |
| keywords[5].score | 0.4058522582054138 |
| keywords[5].display_name | Reinforcement |
| keywords[6].id | https://openalex.org/keywords/bearing |
| keywords[6].score | 0.4026215374469757 |
| keywords[6].display_name | Bearing (navigation) |
| keywords[7].id | https://openalex.org/keywords/boron-nitride |
| keywords[7].score | 0.4023549258708954 |
| keywords[7].display_name | Boron nitride |
| keywords[8].id | https://openalex.org/keywords/sobol-sequence |
| keywords[8].score | 0.39253464341163635 |
| keywords[8].display_name | Sobol sequence |
| language | |
| locations[0].id | doi:10.21203/rs.3.rs-8189627/v1 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.researchsquare.com/article/rs-8189627/latest.pdf |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.21203/rs.3.rs-8189627/v1 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5117096801 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Ranjeet Kumbhar |
| authorships[0].countries | IN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I162030827 |
| authorships[0].affiliations[0].raw_affiliation_string | Thapar Institute of Engineering and Technology |
| authorships[0].institutions[0].id | https://openalex.org/I162030827 |
| authorships[0].institutions[0].ror | https://ror.org/https://ror.org/00wdq3744 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I162030827 |
| authorships[0].institutions[0].country_code | IN |
| authorships[0].institutions[0].display_name | Thapar Institute of Engineering & Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ranjeet Kumbhar |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Thapar Institute of Engineering and Technology |
| authorships[1].author.id | https://openalex.org/A63188203 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-8897-0479 |
| authorships[1].author.display_name | Appaso M. Gadade |
| authorships[1].countries | IN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I162030827 |
| authorships[1].affiliations[0].raw_affiliation_string | Thapar Institute of Engineering and Technology |
| authorships[1].institutions[0].id | https://openalex.org/I162030827 |
| authorships[1].institutions[0].ror | https://ror.org/https://ror.org/00wdq3744 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I162030827 |
| authorships[1].institutions[0].country_code | IN |
| authorships[1].institutions[0].display_name | Thapar Institute of Engineering & Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Appaso M Gadade |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Thapar Institute of Engineering and Technology |
| authorships[2].author.id | https://openalex.org/A2605091824 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-5708-946X |
| authorships[2].author.display_name | Rajmeet Singh |
| authorships[2].countries | AE |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I176601375 |
| authorships[2].affiliations[0].raw_affiliation_string | khalifa University |
| authorships[2].institutions[0].id | https://openalex.org/I176601375 |
| authorships[2].institutions[0].ror | https://ror.org/https://ror.org/05hffr360 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I176601375 |
| authorships[2].institutions[0].country_code | AE |
| authorships[2].institutions[0].display_name | Khalifa University of Science and Technology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Rajmeet Singh |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | khalifa University |
| authorships[3].author.id | |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Divyanshi R Kumar |
| authorships[3].countries | IN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I162030827 |
| authorships[3].affiliations[0].raw_affiliation_string | Thapar Institute of Engineering and Technology |
| authorships[3].institutions[0].id | https://openalex.org/I162030827 |
| authorships[3].institutions[0].ror | https://ror.org/https://ror.org/00wdq3744 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I162030827 |
| authorships[3].institutions[0].country_code | IN |
| authorships[3].institutions[0].display_name | Thapar Institute of Engineering & Technology |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Divyanshi R Kumar |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Thapar Institute of Engineering and Technology |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.researchsquare.com/article/rs-8189627/latest.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-11-25T00:00:00 |
| display_name | Sensitivity-Driven Deep Learning Model for Tribological Prediction in Al7075/B4C Nanocomposites |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-27T01:12:40.094763 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.21203/rs.3.rs-8189627/v1 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.researchsquare.com/article/rs-8189627/latest.pdf |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.21203/rs.3.rs-8189627/v1 |
| primary_location.id | doi:10.21203/rs.3.rs-8189627/v1 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.researchsquare.com/article/rs-8189627/latest.pdf |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.21203/rs.3.rs-8189627/v1 |
| publication_date | 2025-11-25 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.- | 63, 73 |
| abstract_inverted_index.= | 163 |
| abstract_inverted_index.a | 102 |
| abstract_inverted_index.an | 35 |
| abstract_inverted_index.at | 124 |
| abstract_inverted_index.by | 12, 150 |
| abstract_inverted_index.in | 57 |
| abstract_inverted_index.is | 10 |
| abstract_inverted_index.of | 3, 51, 80, 127 |
| abstract_inverted_index.to | 47, 76, 110 |
| abstract_inverted_index.0%, | 128 |
| abstract_inverted_index.12% | 144 |
| abstract_inverted_index.4%, | 129 |
| abstract_inverted_index.77% | 151 |
| abstract_inverted_index.8%, | 130 |
| abstract_inverted_index.B4C | 86, 136, 145 |
| abstract_inverted_index.GSA | 61 |
| abstract_inverted_index.The | 1, 114, 155 |
| abstract_inverted_index.and | 21, 29, 43, 54, 70, 92, 131 |
| abstract_inverted_index.are | 18 |
| abstract_inverted_index.for | 7, 23, 165, 168 |
| abstract_inverted_index.the | 49, 78, 143 |
| abstract_inverted_index.use | 9 |
| abstract_inverted_index.was | 108, 117 |
| abstract_inverted_index.(ML) | 46 |
| abstract_inverted_index.(R² | 162 |
| abstract_inverted_index.0.93 | 164 |
| abstract_inverted_index.0.99 | 167 |
| abstract_inverted_index.12%. | 132 |
| abstract_inverted_index.COF, | 166 |
| abstract_inverted_index.Deep | 103 |
| abstract_inverted_index.Four | 60 |
| abstract_inverted_index.PAWN | 68 |
| abstract_inverted_index.This | 32 |
| abstract_inverted_index.from | 99 |
| abstract_inverted_index.high | 159 |
| abstract_inverted_index.rank | 77 |
| abstract_inverted_index.rate | 56, 149 |
| abstract_inverted_index.show | 134 |
| abstract_inverted_index.that | 17, 135 |
| abstract_inverted_index.wear | 55, 140, 148, 169 |
| abstract_inverted_index.were | 74 |
| abstract_inverted_index.with | 119, 142 |
| abstract_inverted_index.(B4C) | 122 |
| abstract_inverted_index.(COF) | 53 |
| abstract_inverted_index.(GSA) | 42 |
| abstract_inverted_index.Sobol | 64 |
| abstract_inverted_index.Using | 95 |
| abstract_inverted_index.boron | 120 |
| abstract_inverted_index.delta | 66 |
| abstract_inverted_index.input | 81 |
| abstract_inverted_index.load, | 85 |
| abstract_inverted_index.model | 111 |
| abstract_inverted_index.study | 33 |
| abstract_inverted_index.time, | 89 |
| abstract_inverted_index.under | 152 |
| abstract_inverted_index.(DRRN) | 107 |
| abstract_inverted_index.10,800 | 96 |
| abstract_inverted_index.Al7075 | 115 |
| abstract_inverted_index.Global | 39 |
| abstract_inverted_index.index, | 67, 69 |
| abstract_inverted_index.matrix | 116 |
| abstract_inverted_index.mutual | 71 |
| abstract_inverted_index.rate). | 170 |
| abstract_inverted_index.severe | 153 |
| abstract_inverted_index.tests, | 101 |
| abstract_inverted_index.weight | 125 |
| abstract_inverted_index.Machine | 44 |
| abstract_inverted_index.Network | 106 |
| abstract_inverted_index.Results | 133 |
| abstract_inverted_index.applied | 84 |
| abstract_inverted_index.between | 27 |
| abstract_inverted_index.carbide | 121 |
| abstract_inverted_index.costly, | 19 |
| abstract_inverted_index.durable | 5 |
| abstract_inverted_index.methods | 16 |
| abstract_inverted_index.predict | 48 |
| abstract_inverted_index.records | 98 |
| abstract_inverted_index.sliding | 90, 93 |
| abstract_inverted_index.Analysis | 41 |
| abstract_inverted_index.Learning | 45 |
| abstract_inverted_index.Residual | 104 |
| abstract_inverted_index.accuracy | 161 |
| abstract_inverted_index.achieved | 158 |
| abstract_inverted_index.employed | 75 |
| abstract_inverted_index.enhances | 139 |
| abstract_inverted_index.friction | 52 |
| abstract_inverted_index.indices, | 65 |
| abstract_inverted_index.material | 28 |
| abstract_inverted_index.proposed | 156 |
| abstract_inverted_index.proposes | 34 |
| abstract_inverted_index.reducing | 147 |
| abstract_inverted_index.behavior. | 113 |
| abstract_inverted_index.capturing | 24 |
| abstract_inverted_index.combining | 38 |
| abstract_inverted_index.composite | 146 |
| abstract_inverted_index.developed | 109 |
| abstract_inverted_index.distance. | 94 |
| abstract_inverted_index.fractions | 126 |
| abstract_inverted_index.framework | 37, 157 |
| abstract_inverted_index.including | 83 |
| abstract_inverted_index.nonlinear | 25 |
| abstract_inverted_index.particles | 123 |
| abstract_inverted_index.velocity, | 91 |
| abstract_inverted_index.Al7075/B4C | 58 |
| abstract_inverted_index.Regression | 105 |
| abstract_inverted_index.composites | 6 |
| abstract_inverted_index.evaluation | 15 |
| abstract_inverted_index.inadequate | 22 |
| abstract_inverted_index.industrial | 8 |
| abstract_inverted_index.integrated | 36 |
| abstract_inverted_index.predictive | 160 |
| abstract_inverted_index.reinforced | 118 |
| abstract_inverted_index.techniques | 62 |
| abstract_inverted_index.Sensitivity | 40 |
| abstract_inverted_index.coefficient | 50 |
| abstract_inverted_index.conditions. | 154 |
| abstract_inverted_index.constrained | 11 |
| abstract_inverted_index.development | 2 |
| abstract_inverted_index.information | 72 |
| abstract_inverted_index.operational | 30 |
| abstract_inverted_index.parameters, | 82 |
| abstract_inverted_index.parameters. | 31 |
| abstract_inverted_index.percentage, | 88 |
| abstract_inverted_index.pin-on-disc | 100 |
| abstract_inverted_index.resistance, | 141 |
| abstract_inverted_index.traditional | 13 |
| abstract_inverted_index.experimental | 97 |
| abstract_inverted_index.interactions | 26 |
| abstract_inverted_index.lightweight, | 4 |
| abstract_inverted_index.significance | 79 |
| abstract_inverted_index.tribological | 14, 112 |
| abstract_inverted_index.reinforcement | 87, 137 |
| abstract_inverted_index.significantly | 138 |
| abstract_inverted_index.nanocomposites. | 59 |
| abstract_inverted_index.time-consuming, | 20 |
| abstract_inverted_index.<title>Abstract</title> | 0 |
| cited_by_percentile_year | |
| countries_distinct_count | 2 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |