SeNTU: Sentiment Analysis of Tweets by Combining a Rule-based Classifier with Supervised Learning Article Swipe
Prerna Chikersal
,
Soujanya Poria
,
Erik Cambria
·
YOU?
·
· 2015
· Open Access
·
· DOI: https://doi.org/10.18653/v1/s15-2108
YOU?
·
· 2015
· Open Access
·
· DOI: https://doi.org/10.18653/v1/s15-2108
We describe a Twitter sentiment analysis system developed by combining a rule-based classifier with supervised learning.We submitted our results for the message-level subtask in SemEval 2015 Task 10, and achieved a F 1 -score of 57.06%.The rule-based classifier is based on rules that are dependent on the occurrences of emoticons and opinion words in tweets.Whereas, the Support Vector Machine (SVM) is trained on semantic, dependency, and sentiment lexicon based features.The tweets are classified as positive, negative or unknown by the rule-based classifier, and as positive, negative or neutral by the SVM.The results we obtained show that rules can help refine the SVM's predictions.
Related Topics
Concepts
Metadata
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.18653/v1/s15-2108
- https://www.aclweb.org/anthology/S15-2108.pdf
- OA Status
- gold
- Cited By
- 116
- References
- 21
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2251545731
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2251545731Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.18653/v1/s15-2108Digital Object Identifier
- Title
-
SeNTU: Sentiment Analysis of Tweets by Combining a Rule-based Classifier with Supervised LearningWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2015Year of publication
- Publication date
-
2015-01-01Full publication date if available
- Authors
-
Prerna Chikersal, Soujanya Poria, Erik CambriaList of authors in order
- Landing page
-
https://doi.org/10.18653/v1/s15-2108Publisher landing page
- PDF URL
-
https://www.aclweb.org/anthology/S15-2108.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.aclweb.org/anthology/S15-2108.pdfDirect OA link when available
- Concepts
-
Computer science, Sentiment analysis, Artificial intelligence, Support vector machine, Lexicon, Classifier (UML), SemEval, Natural language processing, Rule-based system, Machine learning, Task (project management), Management, EconomicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
116Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2, 2024: 6, 2023: 8, 2022: 5, 2021: 5Per-year citation counts (last 5 years)
- References (count)
-
21Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2251545731 |
|---|---|
| doi | https://doi.org/10.18653/v1/s15-2108 |
| ids.doi | https://doi.org/10.18653/v1/s15-2108 |
| ids.mag | 2251545731 |
| ids.openalex | https://openalex.org/W2251545731 |
| fwci | 19.80095757 |
| type | article |
| title | SeNTU: Sentiment Analysis of Tweets by Combining a Rule-based Classifier with Supervised Learning |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10664 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Sentiment Analysis and Opinion Mining |
| topics[1].id | https://openalex.org/T13083 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9990000128746033 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Advanced Text Analysis Techniques |
| topics[2].id | https://openalex.org/T11550 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.998199999332428 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Text and Document Classification Technologies |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7906907200813293 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C66402592 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7661371231079102 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2271421 |
| concepts[1].display_name | Sentiment analysis |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.7547413110733032 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C12267149 |
| concepts[3].level | 2 |
| concepts[3].score | 0.7284997701644897 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q282453 |
| concepts[3].display_name | Support vector machine |
| concepts[4].id | https://openalex.org/C2778121359 |
| concepts[4].level | 2 |
| concepts[4].score | 0.7019662857055664 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q8096 |
| concepts[4].display_name | Lexicon |
| concepts[5].id | https://openalex.org/C95623464 |
| concepts[5].level | 2 |
| concepts[5].score | 0.6571274995803833 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1096149 |
| concepts[5].display_name | Classifier (UML) |
| concepts[6].id | https://openalex.org/C44572571 |
| concepts[6].level | 3 |
| concepts[6].score | 0.6479935646057129 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7448970 |
| concepts[6].display_name | SemEval |
| concepts[7].id | https://openalex.org/C204321447 |
| concepts[7].level | 1 |
| concepts[7].score | 0.5077356100082397 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[7].display_name | Natural language processing |
| concepts[8].id | https://openalex.org/C149271511 |
| concepts[8].level | 2 |
| concepts[8].score | 0.5003964900970459 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1417149 |
| concepts[8].display_name | Rule-based system |
| concepts[9].id | https://openalex.org/C119857082 |
| concepts[9].level | 1 |
| concepts[9].score | 0.4491522014141083 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[9].display_name | Machine learning |
| concepts[10].id | https://openalex.org/C2780451532 |
| concepts[10].level | 2 |
| concepts[10].score | 0.15268242359161377 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q759676 |
| concepts[10].display_name | Task (project management) |
| concepts[11].id | https://openalex.org/C187736073 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2920921 |
| concepts[11].display_name | Management |
| concepts[12].id | https://openalex.org/C162324750 |
| concepts[12].level | 0 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[12].display_name | Economics |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7906907200813293 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/sentiment-analysis |
| keywords[1].score | 0.7661371231079102 |
| keywords[1].display_name | Sentiment analysis |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.7547413110733032 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/support-vector-machine |
| keywords[3].score | 0.7284997701644897 |
| keywords[3].display_name | Support vector machine |
| keywords[4].id | https://openalex.org/keywords/lexicon |
| keywords[4].score | 0.7019662857055664 |
| keywords[4].display_name | Lexicon |
| keywords[5].id | https://openalex.org/keywords/classifier |
| keywords[5].score | 0.6571274995803833 |
| keywords[5].display_name | Classifier (UML) |
| keywords[6].id | https://openalex.org/keywords/semeval |
| keywords[6].score | 0.6479935646057129 |
| keywords[6].display_name | SemEval |
| keywords[7].id | https://openalex.org/keywords/natural-language-processing |
| keywords[7].score | 0.5077356100082397 |
| keywords[7].display_name | Natural language processing |
| keywords[8].id | https://openalex.org/keywords/rule-based-system |
| keywords[8].score | 0.5003964900970459 |
| keywords[8].display_name | Rule-based system |
| keywords[9].id | https://openalex.org/keywords/machine-learning |
| keywords[9].score | 0.4491522014141083 |
| keywords[9].display_name | Machine learning |
| keywords[10].id | https://openalex.org/keywords/task |
| keywords[10].score | 0.15268242359161377 |
| keywords[10].display_name | Task (project management) |
| language | en |
| locations[0].id | doi:10.18653/v1/s15-2108 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.aclweb.org/anthology/S15-2108.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval 2015) |
| locations[0].landing_page_url | https://doi.org/10.18653/v1/s15-2108 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5014025188 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-0961-6210 |
| authorships[0].author.display_name | Prerna Chikersal |
| authorships[0].countries | SG |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I172675005 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Computer Engineering Nanyang Technological University Singapore -639798 |
| authorships[0].institutions[0].id | https://openalex.org/I172675005 |
| authorships[0].institutions[0].ror | https://ror.org/02e7b5302 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I172675005 |
| authorships[0].institutions[0].country_code | SG |
| authorships[0].institutions[0].display_name | Nanyang Technological University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Prerna Chikersal |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Computer Engineering Nanyang Technological University Singapore -639798 |
| authorships[1].author.id | https://openalex.org/A5033376109 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-6924-7931 |
| authorships[1].author.display_name | Soujanya Poria |
| authorships[1].countries | SG |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I172675005 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Computer Engineering Nanyang Technological University Singapore -639798 |
| authorships[1].institutions[0].id | https://openalex.org/I172675005 |
| authorships[1].institutions[0].ror | https://ror.org/02e7b5302 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I172675005 |
| authorships[1].institutions[0].country_code | SG |
| authorships[1].institutions[0].display_name | Nanyang Technological University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Soujanya Poria |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Computer Engineering Nanyang Technological University Singapore -639798 |
| authorships[2].author.id | https://openalex.org/A5100752356 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-3030-1280 |
| authorships[2].author.display_name | Erik Cambria |
| authorships[2].countries | SG |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I172675005 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Computer Engineering Nanyang Technological University Singapore -639798 |
| authorships[2].institutions[0].id | https://openalex.org/I172675005 |
| authorships[2].institutions[0].ror | https://ror.org/02e7b5302 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I172675005 |
| authorships[2].institutions[0].country_code | SG |
| authorships[2].institutions[0].display_name | Nanyang Technological University |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Erik Cambria |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Computer Engineering Nanyang Technological University Singapore -639798 |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.aclweb.org/anthology/S15-2108.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | SeNTU: Sentiment Analysis of Tweets by Combining a Rule-based Classifier with Supervised Learning |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10664 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Sentiment Analysis and Opinion Mining |
| related_works | https://openalex.org/W2888662092, https://openalex.org/W3205826705, https://openalex.org/W2903394456, https://openalex.org/W2902285665, https://openalex.org/W3119550360, https://openalex.org/W2975174210, https://openalex.org/W2117643817, https://openalex.org/W4200238620, https://openalex.org/W2244029015, https://openalex.org/W2287843335 |
| cited_by_count | 116 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 6 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 8 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 5 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 5 |
| counts_by_year[5].year | 2020 |
| counts_by_year[5].cited_by_count | 16 |
| counts_by_year[6].year | 2019 |
| counts_by_year[6].cited_by_count | 11 |
| counts_by_year[7].year | 2018 |
| counts_by_year[7].cited_by_count | 8 |
| counts_by_year[8].year | 2017 |
| counts_by_year[8].cited_by_count | 11 |
| counts_by_year[9].year | 2016 |
| counts_by_year[9].cited_by_count | 27 |
| counts_by_year[10].year | 2015 |
| counts_by_year[10].cited_by_count | 17 |
| locations_count | 1 |
| best_oa_location.id | doi:10.18653/v1/s15-2108 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.aclweb.org/anthology/S15-2108.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | proceedings-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval 2015) |
| best_oa_location.landing_page_url | https://doi.org/10.18653/v1/s15-2108 |
| primary_location.id | doi:10.18653/v1/s15-2108 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.aclweb.org/anthology/S15-2108.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval 2015) |
| primary_location.landing_page_url | https://doi.org/10.18653/v1/s15-2108 |
| publication_date | 2015-01-01 |
| publication_year | 2015 |
| referenced_works | https://openalex.org/W2161122607, https://openalex.org/W2141631351, https://openalex.org/W2123260696, https://openalex.org/W2250553926, https://openalex.org/W38739846, https://openalex.org/W2157765050, https://openalex.org/W4233787372, https://openalex.org/W4239510810, https://openalex.org/W2296734373, https://openalex.org/W4255173720, https://openalex.org/W2059503205, https://openalex.org/W2467186984, https://openalex.org/W2134297857, https://openalex.org/W2038721957, https://openalex.org/W2962730104, https://openalex.org/W2165571577, https://openalex.org/W1508977358, https://openalex.org/W2040467972, https://openalex.org/W2119821739, https://openalex.org/W1590495275, https://openalex.org/W2250243742 |
| referenced_works_count | 21 |
| abstract_inverted_index.1 | 32 |
| abstract_inverted_index.F | 31 |
| abstract_inverted_index.a | 2, 10, 30 |
| abstract_inverted_index.We | 0 |
| abstract_inverted_index.as | 73, 83 |
| abstract_inverted_index.by | 8, 78, 88 |
| abstract_inverted_index.in | 23, 53 |
| abstract_inverted_index.is | 38, 60 |
| abstract_inverted_index.of | 34, 48 |
| abstract_inverted_index.on | 40, 45, 62 |
| abstract_inverted_index.or | 76, 86 |
| abstract_inverted_index.we | 92 |
| abstract_inverted_index.10, | 27 |
| abstract_inverted_index.and | 28, 50, 65, 82 |
| abstract_inverted_index.are | 43, 71 |
| abstract_inverted_index.can | 97 |
| abstract_inverted_index.for | 19 |
| abstract_inverted_index.our | 17 |
| abstract_inverted_index.the | 20, 46, 55, 79, 89, 100 |
| abstract_inverted_index.2015 | 25 |
| abstract_inverted_index.Task | 26 |
| abstract_inverted_index.help | 98 |
| abstract_inverted_index.show | 94 |
| abstract_inverted_index.that | 42, 95 |
| abstract_inverted_index.with | 13 |
| abstract_inverted_index.(SVM) | 59 |
| abstract_inverted_index.SVM's | 101 |
| abstract_inverted_index.based | 39, 68 |
| abstract_inverted_index.rules | 41, 96 |
| abstract_inverted_index.words | 52 |
| abstract_inverted_index.-score | 33 |
| abstract_inverted_index.Vector | 57 |
| abstract_inverted_index.refine | 99 |
| abstract_inverted_index.system | 6 |
| abstract_inverted_index.tweets | 70 |
| abstract_inverted_index.Machine | 58 |
| abstract_inverted_index.SVM.The | 90 |
| abstract_inverted_index.SemEval | 24 |
| abstract_inverted_index.Support | 56 |
| abstract_inverted_index.Twitter | 3 |
| abstract_inverted_index.lexicon | 67 |
| abstract_inverted_index.neutral | 87 |
| abstract_inverted_index.opinion | 51 |
| abstract_inverted_index.results | 18, 91 |
| abstract_inverted_index.subtask | 22 |
| abstract_inverted_index.trained | 61 |
| abstract_inverted_index.unknown | 77 |
| abstract_inverted_index.achieved | 29 |
| abstract_inverted_index.analysis | 5 |
| abstract_inverted_index.describe | 1 |
| abstract_inverted_index.negative | 75, 85 |
| abstract_inverted_index.obtained | 93 |
| abstract_inverted_index.combining | 9 |
| abstract_inverted_index.dependent | 44 |
| abstract_inverted_index.developed | 7 |
| abstract_inverted_index.emoticons | 49 |
| abstract_inverted_index.positive, | 74, 84 |
| abstract_inverted_index.semantic, | 63 |
| abstract_inverted_index.sentiment | 4, 66 |
| abstract_inverted_index.submitted | 16 |
| abstract_inverted_index.57.06%.The | 35 |
| abstract_inverted_index.classified | 72 |
| abstract_inverted_index.classifier | 12, 37 |
| abstract_inverted_index.rule-based | 11, 36, 80 |
| abstract_inverted_index.supervised | 14 |
| abstract_inverted_index.classifier, | 81 |
| abstract_inverted_index.dependency, | 64 |
| abstract_inverted_index.learning.We | 15 |
| abstract_inverted_index.occurrences | 47 |
| abstract_inverted_index.features.The | 69 |
| abstract_inverted_index.predictions. | 102 |
| abstract_inverted_index.message-level | 21 |
| abstract_inverted_index.tweets.Whereas, | 54 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 95 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/4 |
| sustainable_development_goals[0].score | 0.5099999904632568 |
| sustainable_development_goals[0].display_name | Quality Education |
| citation_normalized_percentile.value | 0.99668992 |
| citation_normalized_percentile.is_in_top_1_percent | True |
| citation_normalized_percentile.is_in_top_10_percent | True |