Sequential Diagnosis Prediction with Transformer and Ontological Representation Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2109.03069
Sequential diagnosis prediction on the Electronic Health Record (EHR) has been proven crucial for predictive analytics in the medical domain. EHR data, sequential records of a patient's interactions with healthcare systems, has numerous inherent characteristics of temporality, irregularity and data insufficiency. Some recent works train healthcare predictive models by making use of sequential information in EHR data, but they are vulnerable to irregular, temporal EHR data with the states of admission/discharge from hospital, and insufficient data. To mitigate this, we propose an end-to-end robust transformer-based model called SETOR, which exploits neural ordinary differential equation to handle both irregular intervals between a patient's visits with admitted timestamps and length of stay in each visit, to alleviate the limitation of insufficient data by integrating medical ontology, and to capture the dependencies between the patient's visits by employing multi-layer transformer blocks. Experiments conducted on two real-world healthcare datasets show that, our sequential diagnoses prediction model SETOR not only achieves better predictive results than previous state-of-the-art approaches, irrespective of sufficient or insufficient training data, but also derives more interpretable embeddings of medical codes. The experimental codes are available at the GitHub repository (https://github.com/Xueping/SETOR).
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2109.03069
- https://arxiv.org/pdf/2109.03069
- OA Status
- green
- Cited By
- 2
- References
- 35
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3196962552
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3196962552Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2109.03069Digital Object Identifier
- Title
-
Sequential Diagnosis Prediction with Transformer and Ontological RepresentationWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-09-07Full publication date if available
- Authors
-
Xueping Peng, Guodong Long, Tao Shen, Sen Wang, Jing JiangList of authors in order
- Landing page
-
https://arxiv.org/abs/2109.03069Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2109.03069Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2109.03069Direct OA link when available
- Concepts
-
Medical diagnosis, Computer science, Exploit, Diagnosis code, Timestamp, Transformer, Data mining, Predictive analytics, Health records, Health care, Machine learning, Artificial intelligence, Medicine, Real-time computing, Economics, Environmental health, Physics, Population, Computer security, Pathology, Economic growth, Voltage, Quantum mechanicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1, 2021: 1Per-year citation counts (last 5 years)
- References (count)
-
35Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3196962552 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2109.03069 |
| ids.doi | https://doi.org/10.48550/arxiv.2109.03069 |
| ids.mag | 3196962552 |
| ids.openalex | https://openalex.org/W3196962552 |
| fwci | |
| type | preprint |
| title | Sequential Diagnosis Prediction with Transformer and Ontological Representation |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T13702 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Machine Learning in Healthcare |
| topics[1].id | https://openalex.org/T10028 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9790999889373779 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Topic Modeling |
| topics[2].id | https://openalex.org/T12246 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9569000005722046 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2713 |
| topics[2].subfield.display_name | Epidemiology |
| topics[2].display_name | Chronic Disease Management Strategies |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C534262118 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6916730999946594 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q177719 |
| concepts[0].display_name | Medical diagnosis |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6756055355072021 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C165696696 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5811659097671509 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11287 |
| concepts[2].display_name | Exploit |
| concepts[3].id | https://openalex.org/C45827449 |
| concepts[3].level | 3 |
| concepts[3].score | 0.5521364808082581 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q5270338 |
| concepts[3].display_name | Diagnosis code |
| concepts[4].id | https://openalex.org/C113954288 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5335332155227661 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q186885 |
| concepts[4].display_name | Timestamp |
| concepts[5].id | https://openalex.org/C66322947 |
| concepts[5].level | 3 |
| concepts[5].score | 0.5142145156860352 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11658 |
| concepts[5].display_name | Transformer |
| concepts[6].id | https://openalex.org/C124101348 |
| concepts[6].level | 1 |
| concepts[6].score | 0.46134501695632935 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[6].display_name | Data mining |
| concepts[7].id | https://openalex.org/C83209312 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4535156786441803 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1053367 |
| concepts[7].display_name | Predictive analytics |
| concepts[8].id | https://openalex.org/C3019952477 |
| concepts[8].level | 3 |
| concepts[8].score | 0.41759154200553894 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1324077 |
| concepts[8].display_name | Health records |
| concepts[9].id | https://openalex.org/C160735492 |
| concepts[9].level | 2 |
| concepts[9].score | 0.3871745467185974 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q31207 |
| concepts[9].display_name | Health care |
| concepts[10].id | https://openalex.org/C119857082 |
| concepts[10].level | 1 |
| concepts[10].score | 0.36860722303390503 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[10].display_name | Machine learning |
| concepts[11].id | https://openalex.org/C154945302 |
| concepts[11].level | 1 |
| concepts[11].score | 0.3603382408618927 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[11].display_name | Artificial intelligence |
| concepts[12].id | https://openalex.org/C71924100 |
| concepts[12].level | 0 |
| concepts[12].score | 0.16068580746650696 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[12].display_name | Medicine |
| concepts[13].id | https://openalex.org/C79403827 |
| concepts[13].level | 1 |
| concepts[13].score | 0.10267943143844604 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q3988 |
| concepts[13].display_name | Real-time computing |
| concepts[14].id | https://openalex.org/C162324750 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[14].display_name | Economics |
| concepts[15].id | https://openalex.org/C99454951 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q932068 |
| concepts[15].display_name | Environmental health |
| concepts[16].id | https://openalex.org/C121332964 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[16].display_name | Physics |
| concepts[17].id | https://openalex.org/C2908647359 |
| concepts[17].level | 2 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q2625603 |
| concepts[17].display_name | Population |
| concepts[18].id | https://openalex.org/C38652104 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q3510521 |
| concepts[18].display_name | Computer security |
| concepts[19].id | https://openalex.org/C142724271 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q7208 |
| concepts[19].display_name | Pathology |
| concepts[20].id | https://openalex.org/C50522688 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q189833 |
| concepts[20].display_name | Economic growth |
| concepts[21].id | https://openalex.org/C165801399 |
| concepts[21].level | 2 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q25428 |
| concepts[21].display_name | Voltage |
| concepts[22].id | https://openalex.org/C62520636 |
| concepts[22].level | 1 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[22].display_name | Quantum mechanics |
| keywords[0].id | https://openalex.org/keywords/medical-diagnosis |
| keywords[0].score | 0.6916730999946594 |
| keywords[0].display_name | Medical diagnosis |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6756055355072021 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/exploit |
| keywords[2].score | 0.5811659097671509 |
| keywords[2].display_name | Exploit |
| keywords[3].id | https://openalex.org/keywords/diagnosis-code |
| keywords[3].score | 0.5521364808082581 |
| keywords[3].display_name | Diagnosis code |
| keywords[4].id | https://openalex.org/keywords/timestamp |
| keywords[4].score | 0.5335332155227661 |
| keywords[4].display_name | Timestamp |
| keywords[5].id | https://openalex.org/keywords/transformer |
| keywords[5].score | 0.5142145156860352 |
| keywords[5].display_name | Transformer |
| keywords[6].id | https://openalex.org/keywords/data-mining |
| keywords[6].score | 0.46134501695632935 |
| keywords[6].display_name | Data mining |
| keywords[7].id | https://openalex.org/keywords/predictive-analytics |
| keywords[7].score | 0.4535156786441803 |
| keywords[7].display_name | Predictive analytics |
| keywords[8].id | https://openalex.org/keywords/health-records |
| keywords[8].score | 0.41759154200553894 |
| keywords[8].display_name | Health records |
| keywords[9].id | https://openalex.org/keywords/health-care |
| keywords[9].score | 0.3871745467185974 |
| keywords[9].display_name | Health care |
| keywords[10].id | https://openalex.org/keywords/machine-learning |
| keywords[10].score | 0.36860722303390503 |
| keywords[10].display_name | Machine learning |
| keywords[11].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[11].score | 0.3603382408618927 |
| keywords[11].display_name | Artificial intelligence |
| keywords[12].id | https://openalex.org/keywords/medicine |
| keywords[12].score | 0.16068580746650696 |
| keywords[12].display_name | Medicine |
| keywords[13].id | https://openalex.org/keywords/real-time-computing |
| keywords[13].score | 0.10267943143844604 |
| keywords[13].display_name | Real-time computing |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2109.03069 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | cc-by-nc-sa |
| locations[0].pdf_url | https://arxiv.org/pdf/2109.03069 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-sa |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2109.03069 |
| locations[1].id | doi:10.48550/arxiv.2109.03069 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2109.03069 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5043549588 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-8901-1472 |
| authorships[0].author.display_name | Xueping Peng |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Xueping Peng |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5059227406 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-3740-9515 |
| authorships[1].author.display_name | Guodong Long |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Guodong Long |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5100611243 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-3315-2468 |
| authorships[2].author.display_name | Tao Shen |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Tao Shen |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5100350745 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-5414-8276 |
| authorships[3].author.display_name | Sen Wang |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Sen Wang |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5057139422 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-5301-7779 |
| authorships[4].author.display_name | Jing Jiang |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Jing Jiang |
| authorships[4].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2109.03069 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2021-09-13T00:00:00 |
| display_name | Sequential Diagnosis Prediction with Transformer and Ontological Representation |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T13702 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Machine Learning in Healthcare |
| related_works | https://openalex.org/W2060561905, https://openalex.org/W2333798660, https://openalex.org/W57843728, https://openalex.org/W2802989430, https://openalex.org/W72816711, https://openalex.org/W2073015584, https://openalex.org/W1992720786, https://openalex.org/W2419506399, https://openalex.org/W2167462787, https://openalex.org/W4319657117 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2021 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2109.03069 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | cc-by-nc-sa |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2109.03069 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-sa |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2109.03069 |
| primary_location.id | pmh:oai:arXiv.org:2109.03069 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | cc-by-nc-sa |
| primary_location.pdf_url | https://arxiv.org/pdf/2109.03069 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-sa |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2109.03069 |
| publication_date | 2021-09-07 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W2742491462, https://openalex.org/W2284851926, https://openalex.org/W2963208729, https://openalex.org/W2597655663, https://openalex.org/W2807771243, https://openalex.org/W2194775991, https://openalex.org/W2964990093, https://openalex.org/W2396881363, https://openalex.org/W6908809, https://openalex.org/W2064675550, https://openalex.org/W2625625371, https://openalex.org/W3128252541, https://openalex.org/W2908082115, https://openalex.org/W2963271116, https://openalex.org/W2963611386, https://openalex.org/W2963341956, https://openalex.org/W2998385486, https://openalex.org/W2557074642, https://openalex.org/W2963755523, https://openalex.org/W2950577311, https://openalex.org/W2973281329, https://openalex.org/W2157331557, https://openalex.org/W2187089797, https://openalex.org/W2970181183, https://openalex.org/W2963403868, https://openalex.org/W2907097276, https://openalex.org/W2971278153, https://openalex.org/W2809398771, https://openalex.org/W3004402226, https://openalex.org/W2946345909, https://openalex.org/W2944652849, https://openalex.org/W3196053097, https://openalex.org/W3099136959, https://openalex.org/W3134761328, https://openalex.org/W2896538705 |
| referenced_works_count | 35 |
| abstract_inverted_index.a | 25, 100 |
| abstract_inverted_index.To | 76 |
| abstract_inverted_index.an | 81 |
| abstract_inverted_index.at | 184 |
| abstract_inverted_index.by | 48, 120, 133 |
| abstract_inverted_index.in | 16, 54, 110 |
| abstract_inverted_index.of | 24, 35, 51, 69, 108, 117, 164, 176 |
| abstract_inverted_index.on | 3, 140 |
| abstract_inverted_index.or | 166 |
| abstract_inverted_index.to | 61, 94, 113, 125 |
| abstract_inverted_index.we | 79 |
| abstract_inverted_index.EHR | 20, 55, 64 |
| abstract_inverted_index.The | 179 |
| abstract_inverted_index.and | 38, 73, 106, 124 |
| abstract_inverted_index.are | 59, 182 |
| abstract_inverted_index.but | 57, 170 |
| abstract_inverted_index.for | 13 |
| abstract_inverted_index.has | 9, 31 |
| abstract_inverted_index.not | 153 |
| abstract_inverted_index.our | 147 |
| abstract_inverted_index.the | 4, 17, 67, 115, 127, 130, 185 |
| abstract_inverted_index.two | 141 |
| abstract_inverted_index.use | 50 |
| abstract_inverted_index.Some | 41 |
| abstract_inverted_index.also | 171 |
| abstract_inverted_index.been | 10 |
| abstract_inverted_index.both | 96 |
| abstract_inverted_index.data | 39, 65, 119 |
| abstract_inverted_index.each | 111 |
| abstract_inverted_index.from | 71 |
| abstract_inverted_index.more | 173 |
| abstract_inverted_index.only | 154 |
| abstract_inverted_index.show | 145 |
| abstract_inverted_index.stay | 109 |
| abstract_inverted_index.than | 159 |
| abstract_inverted_index.they | 58 |
| abstract_inverted_index.with | 28, 66, 103 |
| abstract_inverted_index.(EHR) | 8 |
| abstract_inverted_index.SETOR | 152 |
| abstract_inverted_index.codes | 181 |
| abstract_inverted_index.data, | 21, 56, 169 |
| abstract_inverted_index.data. | 75 |
| abstract_inverted_index.model | 85, 151 |
| abstract_inverted_index.that, | 146 |
| abstract_inverted_index.this, | 78 |
| abstract_inverted_index.train | 44 |
| abstract_inverted_index.which | 88 |
| abstract_inverted_index.works | 43 |
| abstract_inverted_index.GitHub | 186 |
| abstract_inverted_index.Health | 6 |
| abstract_inverted_index.Record | 7 |
| abstract_inverted_index.SETOR, | 87 |
| abstract_inverted_index.better | 156 |
| abstract_inverted_index.called | 86 |
| abstract_inverted_index.codes. | 178 |
| abstract_inverted_index.handle | 95 |
| abstract_inverted_index.length | 107 |
| abstract_inverted_index.making | 49 |
| abstract_inverted_index.models | 47 |
| abstract_inverted_index.neural | 90 |
| abstract_inverted_index.proven | 11 |
| abstract_inverted_index.recent | 42 |
| abstract_inverted_index.robust | 83 |
| abstract_inverted_index.states | 68 |
| abstract_inverted_index.visit, | 112 |
| abstract_inverted_index.visits | 102, 132 |
| abstract_inverted_index.between | 99, 129 |
| abstract_inverted_index.blocks. | 137 |
| abstract_inverted_index.capture | 126 |
| abstract_inverted_index.crucial | 12 |
| abstract_inverted_index.derives | 172 |
| abstract_inverted_index.domain. | 19 |
| abstract_inverted_index.medical | 18, 122, 177 |
| abstract_inverted_index.propose | 80 |
| abstract_inverted_index.records | 23 |
| abstract_inverted_index.results | 158 |
| abstract_inverted_index.achieves | 155 |
| abstract_inverted_index.admitted | 104 |
| abstract_inverted_index.datasets | 144 |
| abstract_inverted_index.equation | 93 |
| abstract_inverted_index.exploits | 89 |
| abstract_inverted_index.inherent | 33 |
| abstract_inverted_index.mitigate | 77 |
| abstract_inverted_index.numerous | 32 |
| abstract_inverted_index.ordinary | 91 |
| abstract_inverted_index.previous | 160 |
| abstract_inverted_index.systems, | 30 |
| abstract_inverted_index.temporal | 63 |
| abstract_inverted_index.training | 168 |
| abstract_inverted_index.alleviate | 114 |
| abstract_inverted_index.analytics | 15 |
| abstract_inverted_index.available | 183 |
| abstract_inverted_index.conducted | 139 |
| abstract_inverted_index.diagnoses | 149 |
| abstract_inverted_index.diagnosis | 1 |
| abstract_inverted_index.employing | 134 |
| abstract_inverted_index.hospital, | 72 |
| abstract_inverted_index.intervals | 98 |
| abstract_inverted_index.irregular | 97 |
| abstract_inverted_index.ontology, | 123 |
| abstract_inverted_index.patient's | 26, 101, 131 |
| abstract_inverted_index.Electronic | 5 |
| abstract_inverted_index.Sequential | 0 |
| abstract_inverted_index.embeddings | 175 |
| abstract_inverted_index.end-to-end | 82 |
| abstract_inverted_index.healthcare | 29, 45, 143 |
| abstract_inverted_index.irregular, | 62 |
| abstract_inverted_index.limitation | 116 |
| abstract_inverted_index.prediction | 2, 150 |
| abstract_inverted_index.predictive | 14, 46, 157 |
| abstract_inverted_index.real-world | 142 |
| abstract_inverted_index.repository | 187 |
| abstract_inverted_index.sequential | 22, 52, 148 |
| abstract_inverted_index.sufficient | 165 |
| abstract_inverted_index.timestamps | 105 |
| abstract_inverted_index.vulnerable | 60 |
| abstract_inverted_index.Experiments | 138 |
| abstract_inverted_index.approaches, | 162 |
| abstract_inverted_index.information | 53 |
| abstract_inverted_index.integrating | 121 |
| abstract_inverted_index.multi-layer | 135 |
| abstract_inverted_index.transformer | 136 |
| abstract_inverted_index.dependencies | 128 |
| abstract_inverted_index.differential | 92 |
| abstract_inverted_index.experimental | 180 |
| abstract_inverted_index.insufficient | 74, 118, 167 |
| abstract_inverted_index.interactions | 27 |
| abstract_inverted_index.irregularity | 37 |
| abstract_inverted_index.irrespective | 163 |
| abstract_inverted_index.temporality, | 36 |
| abstract_inverted_index.interpretable | 174 |
| abstract_inverted_index.insufficiency. | 40 |
| abstract_inverted_index.characteristics | 34 |
| abstract_inverted_index.state-of-the-art | 161 |
| abstract_inverted_index.transformer-based | 84 |
| abstract_inverted_index.admission/discharge | 70 |
| abstract_inverted_index.(https://github.com/Xueping/SETOR). | 188 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile |