Shared Latent Embedding Learning for Multi-View Subspace Clustering Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1587/transinf.2023edl8044
Most existing multi-view subspace clustering approaches only capture the inter-view similarities between different views and ignore the optimal local geometric structure of the original data. To this end, in this letter, we put forward a novel method named shared latent embedding learning for multi-view subspace clustering (SLE-MSC), which can efficiently capture a better latent space. To be specific, we introduce a pseudo-label constraint to capture the intra-view similarities within each view. Meanwhile, we utilize a novel optimal graph Laplacian to learn the consistent latent representation, in which the common manifold is considered as the optimal manifold to obtain a more reasonable local geometric structure. Comprehensive experimental results indicate the superiority and effectiveness of the proposed method.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1587/transinf.2023edl8044
- https://www.jstage.jst.go.jp/article/transinf/E107.D/1/E107.D_2023EDL8044/_pdf
- OA Status
- diamond
- Cited By
- 1
- References
- 14
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4390463256
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4390463256Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1587/transinf.2023edl8044Digital Object Identifier
- Title
-
Shared Latent Embedding Learning for Multi-View Subspace ClusteringWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-12-31Full publication date if available
- Authors
-
Liu Zhao-hu, Peng Song, Jinshuai Mu, Wenming ZhengList of authors in order
- Landing page
-
https://doi.org/10.1587/transinf.2023edl8044Publisher landing page
- PDF URL
-
https://www.jstage.jst.go.jp/article/transinf/E107.D/1/E107.D_2023EDL8044/_pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://www.jstage.jst.go.jp/article/transinf/E107.D/1/E107.D_2023EDL8044/_pdfDirect OA link when available
- Concepts
-
Subspace topology, Computer science, Cluster analysis, Embedding, Nonlinear dimensionality reduction, Representation (politics), Constraint (computer-aided design), Artificial intelligence, Manifold (fluid mechanics), Graph, Feature learning, Theoretical computer science, Machine learning, Pattern recognition (psychology), Mathematics, Dimensionality reduction, Geometry, Engineering, Political science, Law, Mechanical engineering, PoliticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1Per-year citation counts (last 5 years)
- References (count)
-
14Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4390463256 |
|---|---|
| doi | https://doi.org/10.1587/transinf.2023edl8044 |
| ids.doi | https://doi.org/10.1587/transinf.2023edl8044 |
| ids.openalex | https://openalex.org/W4390463256 |
| fwci | 0.18196834 |
| type | article |
| title | Shared Latent Embedding Learning for Multi-View Subspace Clustering |
| biblio.issue | 1 |
| biblio.volume | E107.D |
| biblio.last_page | 152 |
| biblio.first_page | 148 |
| topics[0].id | https://openalex.org/T10057 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9947999715805054 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Face and Expression Recognition |
| topics[1].id | https://openalex.org/T11550 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9789000153541565 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Text and Document Classification Technologies |
| topics[2].id | https://openalex.org/T13955 |
| topics[2].field.id | https://openalex.org/fields/23 |
| topics[2].field.display_name | Environmental Science |
| topics[2].score | 0.9419999718666077 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2302 |
| topics[2].subfield.display_name | Ecological Modeling |
| topics[2].display_name | Evaluation Methods in Various Fields |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C32834561 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7832449078559875 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q660730 |
| concepts[0].display_name | Subspace topology |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7514479756355286 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C73555534 |
| concepts[2].level | 2 |
| concepts[2].score | 0.720816969871521 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q622825 |
| concepts[2].display_name | Cluster analysis |
| concepts[3].id | https://openalex.org/C41608201 |
| concepts[3].level | 2 |
| concepts[3].score | 0.7076878547668457 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q980509 |
| concepts[3].display_name | Embedding |
| concepts[4].id | https://openalex.org/C151876577 |
| concepts[4].level | 3 |
| concepts[4].score | 0.5574639439582825 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q7049464 |
| concepts[4].display_name | Nonlinear dimensionality reduction |
| concepts[5].id | https://openalex.org/C2776359362 |
| concepts[5].level | 3 |
| concepts[5].score | 0.5206253528594971 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2145286 |
| concepts[5].display_name | Representation (politics) |
| concepts[6].id | https://openalex.org/C2776036281 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5043786764144897 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q48769818 |
| concepts[6].display_name | Constraint (computer-aided design) |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.5042425394058228 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| concepts[8].id | https://openalex.org/C529865628 |
| concepts[8].level | 2 |
| concepts[8].score | 0.48387324810028076 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1790740 |
| concepts[8].display_name | Manifold (fluid mechanics) |
| concepts[9].id | https://openalex.org/C132525143 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4836369752883911 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q141488 |
| concepts[9].display_name | Graph |
| concepts[10].id | https://openalex.org/C59404180 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4495108723640442 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q17013334 |
| concepts[10].display_name | Feature learning |
| concepts[11].id | https://openalex.org/C80444323 |
| concepts[11].level | 1 |
| concepts[11].score | 0.3728597164154053 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[11].display_name | Theoretical computer science |
| concepts[12].id | https://openalex.org/C119857082 |
| concepts[12].level | 1 |
| concepts[12].score | 0.35106509923934937 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[12].display_name | Machine learning |
| concepts[13].id | https://openalex.org/C153180895 |
| concepts[13].level | 2 |
| concepts[13].score | 0.3344520926475525 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[13].display_name | Pattern recognition (psychology) |
| concepts[14].id | https://openalex.org/C33923547 |
| concepts[14].level | 0 |
| concepts[14].score | 0.21266409754753113 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[14].display_name | Mathematics |
| concepts[15].id | https://openalex.org/C70518039 |
| concepts[15].level | 2 |
| concepts[15].score | 0.15681958198547363 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q16000077 |
| concepts[15].display_name | Dimensionality reduction |
| concepts[16].id | https://openalex.org/C2524010 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[16].display_name | Geometry |
| concepts[17].id | https://openalex.org/C127413603 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[17].display_name | Engineering |
| concepts[18].id | https://openalex.org/C17744445 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q36442 |
| concepts[18].display_name | Political science |
| concepts[19].id | https://openalex.org/C199539241 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q7748 |
| concepts[19].display_name | Law |
| concepts[20].id | https://openalex.org/C78519656 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q101333 |
| concepts[20].display_name | Mechanical engineering |
| concepts[21].id | https://openalex.org/C94625758 |
| concepts[21].level | 2 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q7163 |
| concepts[21].display_name | Politics |
| keywords[0].id | https://openalex.org/keywords/subspace-topology |
| keywords[0].score | 0.7832449078559875 |
| keywords[0].display_name | Subspace topology |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7514479756355286 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/cluster-analysis |
| keywords[2].score | 0.720816969871521 |
| keywords[2].display_name | Cluster analysis |
| keywords[3].id | https://openalex.org/keywords/embedding |
| keywords[3].score | 0.7076878547668457 |
| keywords[3].display_name | Embedding |
| keywords[4].id | https://openalex.org/keywords/nonlinear-dimensionality-reduction |
| keywords[4].score | 0.5574639439582825 |
| keywords[4].display_name | Nonlinear dimensionality reduction |
| keywords[5].id | https://openalex.org/keywords/representation |
| keywords[5].score | 0.5206253528594971 |
| keywords[5].display_name | Representation (politics) |
| keywords[6].id | https://openalex.org/keywords/constraint |
| keywords[6].score | 0.5043786764144897 |
| keywords[6].display_name | Constraint (computer-aided design) |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.5042425394058228 |
| keywords[7].display_name | Artificial intelligence |
| keywords[8].id | https://openalex.org/keywords/manifold |
| keywords[8].score | 0.48387324810028076 |
| keywords[8].display_name | Manifold (fluid mechanics) |
| keywords[9].id | https://openalex.org/keywords/graph |
| keywords[9].score | 0.4836369752883911 |
| keywords[9].display_name | Graph |
| keywords[10].id | https://openalex.org/keywords/feature-learning |
| keywords[10].score | 0.4495108723640442 |
| keywords[10].display_name | Feature learning |
| keywords[11].id | https://openalex.org/keywords/theoretical-computer-science |
| keywords[11].score | 0.3728597164154053 |
| keywords[11].display_name | Theoretical computer science |
| keywords[12].id | https://openalex.org/keywords/machine-learning |
| keywords[12].score | 0.35106509923934937 |
| keywords[12].display_name | Machine learning |
| keywords[13].id | https://openalex.org/keywords/pattern-recognition |
| keywords[13].score | 0.3344520926475525 |
| keywords[13].display_name | Pattern recognition (psychology) |
| keywords[14].id | https://openalex.org/keywords/mathematics |
| keywords[14].score | 0.21266409754753113 |
| keywords[14].display_name | Mathematics |
| keywords[15].id | https://openalex.org/keywords/dimensionality-reduction |
| keywords[15].score | 0.15681958198547363 |
| keywords[15].display_name | Dimensionality reduction |
| language | en |
| locations[0].id | doi:10.1587/transinf.2023edl8044 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2486202937 |
| locations[0].source.issn | 0916-8532, 1745-1361 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 0916-8532 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | IEICE Transactions on Information and Systems |
| locations[0].source.host_organization | https://openalex.org/P4320800604 |
| locations[0].source.host_organization_name | Institute of Electronics, Information and Communication Engineers |
| locations[0].source.host_organization_lineage | https://openalex.org/P4320800604 |
| locations[0].source.host_organization_lineage_names | Institute of Electronics, Information and Communication Engineers |
| locations[0].license | |
| locations[0].pdf_url | https://www.jstage.jst.go.jp/article/transinf/E107.D/1/E107.D_2023EDL8044/_pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEICE Transactions on Information and Systems |
| locations[0].landing_page_url | https://doi.org/10.1587/transinf.2023edl8044 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5029752550 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-9611-507X |
| authorships[0].author.display_name | Liu Zhao-hu |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I18452120 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Computer and Control Engineering, Yantai University |
| authorships[0].institutions[0].id | https://openalex.org/I18452120 |
| authorships[0].institutions[0].ror | https://ror.org/01rp41m56 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I18452120 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Yantai University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zhaohu LIU |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Computer and Control Engineering, Yantai University |
| authorships[1].author.id | https://openalex.org/A5009279384 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-6567-663X |
| authorships[1].author.display_name | Peng Song |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I18452120 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Computer and Control Engineering, Yantai University |
| authorships[1].institutions[0].id | https://openalex.org/I18452120 |
| authorships[1].institutions[0].ror | https://ror.org/01rp41m56 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I18452120 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Yantai University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Peng SONG |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Computer and Control Engineering, Yantai University |
| authorships[2].author.id | https://openalex.org/A5002029173 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Jinshuai Mu |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I18452120 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Computer and Control Engineering, Yantai University |
| authorships[2].institutions[0].id | https://openalex.org/I18452120 |
| authorships[2].institutions[0].ror | https://ror.org/01rp41m56 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I18452120 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Yantai University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Jinshuai MU |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Computer and Control Engineering, Yantai University |
| authorships[3].author.id | https://openalex.org/A5029771864 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-7764-5179 |
| authorships[3].author.display_name | Wenming Zheng |
| authorships[3].affiliations[0].raw_affiliation_string | Key Laboratory of Child Development and Learning Science, Ministry of Education (Southeast University), Southeast University |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Wenming ZHENG |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Key Laboratory of Child Development and Learning Science, Ministry of Education (Southeast University), Southeast University |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.jstage.jst.go.jp/article/transinf/E107.D/1/E107.D_2023EDL8044/_pdf |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Shared Latent Embedding Learning for Multi-View Subspace Clustering |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10057 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9947999715805054 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Face and Expression Recognition |
| related_works | https://openalex.org/W117517268, https://openalex.org/W1855212908, https://openalex.org/W2383239174, https://openalex.org/W2362829263, https://openalex.org/W2900415423, https://openalex.org/W3159953198, https://openalex.org/W2380477800, https://openalex.org/W2347974653, https://openalex.org/W2766342722, https://openalex.org/W2970256865 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1587/transinf.2023edl8044 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2486202937 |
| best_oa_location.source.issn | 0916-8532, 1745-1361 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 0916-8532 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | IEICE Transactions on Information and Systems |
| best_oa_location.source.host_organization | https://openalex.org/P4320800604 |
| best_oa_location.source.host_organization_name | Institute of Electronics, Information and Communication Engineers |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4320800604 |
| best_oa_location.source.host_organization_lineage_names | Institute of Electronics, Information and Communication Engineers |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://www.jstage.jst.go.jp/article/transinf/E107.D/1/E107.D_2023EDL8044/_pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IEICE Transactions on Information and Systems |
| best_oa_location.landing_page_url | https://doi.org/10.1587/transinf.2023edl8044 |
| primary_location.id | doi:10.1587/transinf.2023edl8044 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2486202937 |
| primary_location.source.issn | 0916-8532, 1745-1361 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 0916-8532 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | IEICE Transactions on Information and Systems |
| primary_location.source.host_organization | https://openalex.org/P4320800604 |
| primary_location.source.host_organization_name | Institute of Electronics, Information and Communication Engineers |
| primary_location.source.host_organization_lineage | https://openalex.org/P4320800604 |
| primary_location.source.host_organization_lineage_names | Institute of Electronics, Information and Communication Engineers |
| primary_location.license | |
| primary_location.pdf_url | https://www.jstage.jst.go.jp/article/transinf/E107.D/1/E107.D_2023EDL8044/_pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEICE Transactions on Information and Systems |
| primary_location.landing_page_url | https://doi.org/10.1587/transinf.2023edl8044 |
| publication_date | 2023-12-31 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W4289341676, https://openalex.org/W4311548849, https://openalex.org/W2741998188, https://openalex.org/W2951897416, https://openalex.org/W3126095025, https://openalex.org/W3184340199, https://openalex.org/W2097308346, https://openalex.org/W1975172027, https://openalex.org/W2166371785, https://openalex.org/W1907775068, https://openalex.org/W2921065608, https://openalex.org/W4210758414, https://openalex.org/W2797647736, https://openalex.org/W4225473713 |
| referenced_works_count | 14 |
| abstract_inverted_index.a | 34, 51, 60, 74, 98 |
| abstract_inverted_index.To | 25, 55 |
| abstract_inverted_index.as | 92 |
| abstract_inverted_index.be | 56 |
| abstract_inverted_index.in | 28, 85 |
| abstract_inverted_index.is | 90 |
| abstract_inverted_index.of | 21, 112 |
| abstract_inverted_index.to | 63, 79, 96 |
| abstract_inverted_index.we | 31, 58, 72 |
| abstract_inverted_index.and | 14, 110 |
| abstract_inverted_index.can | 48 |
| abstract_inverted_index.for | 42 |
| abstract_inverted_index.put | 32 |
| abstract_inverted_index.the | 8, 16, 22, 65, 81, 87, 93, 108, 113 |
| abstract_inverted_index.Most | 0 |
| abstract_inverted_index.each | 69 |
| abstract_inverted_index.end, | 27 |
| abstract_inverted_index.more | 99 |
| abstract_inverted_index.only | 6 |
| abstract_inverted_index.this | 26, 29 |
| abstract_inverted_index.data. | 24 |
| abstract_inverted_index.graph | 77 |
| abstract_inverted_index.learn | 80 |
| abstract_inverted_index.local | 18, 101 |
| abstract_inverted_index.named | 37 |
| abstract_inverted_index.novel | 35, 75 |
| abstract_inverted_index.view. | 70 |
| abstract_inverted_index.views | 13 |
| abstract_inverted_index.which | 47, 86 |
| abstract_inverted_index.better | 52 |
| abstract_inverted_index.common | 88 |
| abstract_inverted_index.ignore | 15 |
| abstract_inverted_index.latent | 39, 53, 83 |
| abstract_inverted_index.method | 36 |
| abstract_inverted_index.obtain | 97 |
| abstract_inverted_index.shared | 38 |
| abstract_inverted_index.space. | 54 |
| abstract_inverted_index.within | 68 |
| abstract_inverted_index.between | 11 |
| abstract_inverted_index.capture | 7, 50, 64 |
| abstract_inverted_index.forward | 33 |
| abstract_inverted_index.letter, | 30 |
| abstract_inverted_index.method. | 115 |
| abstract_inverted_index.optimal | 17, 76, 94 |
| abstract_inverted_index.results | 106 |
| abstract_inverted_index.utilize | 73 |
| abstract_inverted_index.existing | 1 |
| abstract_inverted_index.indicate | 107 |
| abstract_inverted_index.learning | 41 |
| abstract_inverted_index.manifold | 89, 95 |
| abstract_inverted_index.original | 23 |
| abstract_inverted_index.proposed | 114 |
| abstract_inverted_index.subspace | 3, 44 |
| abstract_inverted_index.Laplacian | 78 |
| abstract_inverted_index.different | 12 |
| abstract_inverted_index.embedding | 40 |
| abstract_inverted_index.geometric | 19, 102 |
| abstract_inverted_index.introduce | 59 |
| abstract_inverted_index.specific, | 57 |
| abstract_inverted_index.structure | 20 |
| abstract_inverted_index.(SLE-MSC), | 46 |
| abstract_inverted_index.Meanwhile, | 71 |
| abstract_inverted_index.approaches | 5 |
| abstract_inverted_index.clustering | 4, 45 |
| abstract_inverted_index.considered | 91 |
| abstract_inverted_index.consistent | 82 |
| abstract_inverted_index.constraint | 62 |
| abstract_inverted_index.inter-view | 9 |
| abstract_inverted_index.intra-view | 66 |
| abstract_inverted_index.multi-view | 2, 43 |
| abstract_inverted_index.reasonable | 100 |
| abstract_inverted_index.structure. | 103 |
| abstract_inverted_index.efficiently | 49 |
| abstract_inverted_index.superiority | 109 |
| abstract_inverted_index.experimental | 105 |
| abstract_inverted_index.pseudo-label | 61 |
| abstract_inverted_index.similarities | 10, 67 |
| abstract_inverted_index.Comprehensive | 104 |
| abstract_inverted_index.effectiveness | 111 |
| abstract_inverted_index.representation, | 84 |
| cited_by_percentile_year.max | 94 |
| cited_by_percentile_year.min | 90 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.49364994 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |