SHARP BOUNDS OF SOME COEFFICIENT FUNCTIONALS OVER THE CLASS OF FUNCTIONS CONVEX IN THE DIRECTION OF THE IMAGINARY AXIS Article Swipe
Related Concepts
Mathematics
Lemma (botany)
Regular polygon
Class (philosophy)
Unit (ring theory)
Combinatorics
Prime (order theory)
Convex function
Mathematical analysis
Analytic function
Pure mathematics
Geometry
Artificial intelligence
Mathematics education
Biology
Computer science
Poaceae
Ecology
Nak Eun Cho
,
Bogumiła Kowalczyk
,
Adam Lecko
·
YOU?
·
· 2019
· Open Access
·
· DOI: https://doi.org/10.1017/s0004972718001429
· OA: W2911455179
YOU?
·
· 2019
· Open Access
·
· DOI: https://doi.org/10.1017/s0004972718001429
· OA: W2911455179
We apply the Schwarz lemma to find general formulas for the third coefficient of Carathéodory functions dependent on a parameter in the closed unit polydisk. Next we find sharp estimates of the Hankel determinant $H_{2,2}$ and Zalcman functional $J_{2,3}$ over the class ${\mathcal{C}}{\mathcal{V}}$ of analytic functions $f$ normalised such that $\text{Re}\{(1-z^{2})f^{\prime }(z)\}>0$ for $z\in \mathbb{D}:=\{z\in \mathbb{C}:|z|<1\}$ , that is, the subclass of the class of functions convex in the direction of the imaginary axis.
Related Topics
Finding more related topics…