Shelf-Supervised Cross-Modal Pre-Training for 3D Object Detection Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2406.10115
State-of-the-art 3D object detectors are often trained on massive labeled datasets. However, annotating 3D bounding boxes remains prohibitively expensive and time-consuming, particularly for LiDAR. Instead, recent works demonstrate that self-supervised pre-training with unlabeled data can improve detection accuracy with limited labels. Contemporary methods adapt best-practices for self-supervised learning from the image domain to point clouds (such as contrastive learning). However, publicly available 3D datasets are considerably smaller and less diverse than those used for image-based self-supervised learning, limiting their effectiveness. We do note, however, that such 3D data is naturally collected in a multimodal fashion, often paired with images. Rather than pre-training with only self-supervised objectives, we argue that it is better to bootstrap point cloud representations using image-based foundation models trained on internet-scale data. Specifically, we propose a shelf-supervised approach (e.g. supervised with off-the-shelf image foundation models) for generating zero-shot 3D bounding boxes from paired RGB and LiDAR data. Pre-training 3D detectors with such pseudo-labels yields significantly better semi-supervised detection accuracy than prior self-supervised pretext tasks. Importantly, we show that image-based shelf-supervision is helpful for training LiDAR-only, RGB-only and multi-modal (RGB + LiDAR) detectors. We demonstrate the effectiveness of our approach on nuScenes and WOD, significantly improving over prior work in limited data settings. Our code is available at https://github.com/meharkhurana03/cm3d
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2406.10115
- https://arxiv.org/pdf/2406.10115
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4399759380
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4399759380Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2406.10115Digital Object Identifier
- Title
-
Shelf-Supervised Cross-Modal Pre-Training for 3D Object DetectionWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-06-14Full publication date if available
- Authors
-
Mehar Khurana, Neehar Peri, Deva Ramanan, James HaysList of authors in order
- Landing page
-
https://arxiv.org/abs/2406.10115Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2406.10115Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2406.10115Direct OA link when available
- Concepts
-
Modal, Training (meteorology), Computer science, Artificial intelligence, Object (grammar), Off the shelf, Object detection, Computer vision, Training set, Pattern recognition (psychology), Geography, Software engineering, Meteorology, Chemistry, Polymer chemistryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4399759380 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2406.10115 |
| ids.doi | https://doi.org/10.48550/arxiv.2406.10115 |
| ids.openalex | https://openalex.org/W4399759380 |
| fwci | |
| type | preprint |
| title | Shelf-Supervised Cross-Modal Pre-Training for 3D Object Detection |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10036 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9337999820709229 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Advanced Neural Network Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C71139939 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7612084150314331 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q910194 |
| concepts[0].display_name | Modal |
| concepts[1].id | https://openalex.org/C2777211547 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6666661500930786 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q17141490 |
| concepts[1].display_name | Training (meteorology) |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.6357124447822571 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5833612084388733 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C2781238097 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5288724899291992 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q175026 |
| concepts[4].display_name | Object (grammar) |
| concepts[5].id | https://openalex.org/C2982819384 |
| concepts[5].level | 2 |
| concepts[5].score | 0.48444440960884094 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7078910 |
| concepts[5].display_name | Off the shelf |
| concepts[6].id | https://openalex.org/C2776151529 |
| concepts[6].level | 3 |
| concepts[6].score | 0.47567787766456604 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q3045304 |
| concepts[6].display_name | Object detection |
| concepts[7].id | https://openalex.org/C31972630 |
| concepts[7].level | 1 |
| concepts[7].score | 0.46541619300842285 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[7].display_name | Computer vision |
| concepts[8].id | https://openalex.org/C51632099 |
| concepts[8].level | 2 |
| concepts[8].score | 0.42493927478790283 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q3985153 |
| concepts[8].display_name | Training set |
| concepts[9].id | https://openalex.org/C153180895 |
| concepts[9].level | 2 |
| concepts[9].score | 0.36428141593933105 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[9].display_name | Pattern recognition (psychology) |
| concepts[10].id | https://openalex.org/C205649164 |
| concepts[10].level | 0 |
| concepts[10].score | 0.14178651571273804 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[10].display_name | Geography |
| concepts[11].id | https://openalex.org/C115903868 |
| concepts[11].level | 1 |
| concepts[11].score | 0.052348822355270386 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q80993 |
| concepts[11].display_name | Software engineering |
| concepts[12].id | https://openalex.org/C153294291 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q25261 |
| concepts[12].display_name | Meteorology |
| concepts[13].id | https://openalex.org/C185592680 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[13].display_name | Chemistry |
| concepts[14].id | https://openalex.org/C188027245 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q750446 |
| concepts[14].display_name | Polymer chemistry |
| keywords[0].id | https://openalex.org/keywords/modal |
| keywords[0].score | 0.7612084150314331 |
| keywords[0].display_name | Modal |
| keywords[1].id | https://openalex.org/keywords/training |
| keywords[1].score | 0.6666661500930786 |
| keywords[1].display_name | Training (meteorology) |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.6357124447822571 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.5833612084388733 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/object |
| keywords[4].score | 0.5288724899291992 |
| keywords[4].display_name | Object (grammar) |
| keywords[5].id | https://openalex.org/keywords/off-the-shelf |
| keywords[5].score | 0.48444440960884094 |
| keywords[5].display_name | Off the shelf |
| keywords[6].id | https://openalex.org/keywords/object-detection |
| keywords[6].score | 0.47567787766456604 |
| keywords[6].display_name | Object detection |
| keywords[7].id | https://openalex.org/keywords/computer-vision |
| keywords[7].score | 0.46541619300842285 |
| keywords[7].display_name | Computer vision |
| keywords[8].id | https://openalex.org/keywords/training-set |
| keywords[8].score | 0.42493927478790283 |
| keywords[8].display_name | Training set |
| keywords[9].id | https://openalex.org/keywords/pattern-recognition |
| keywords[9].score | 0.36428141593933105 |
| keywords[9].display_name | Pattern recognition (psychology) |
| keywords[10].id | https://openalex.org/keywords/geography |
| keywords[10].score | 0.14178651571273804 |
| keywords[10].display_name | Geography |
| keywords[11].id | https://openalex.org/keywords/software-engineering |
| keywords[11].score | 0.052348822355270386 |
| keywords[11].display_name | Software engineering |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2406.10115 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2406.10115 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2406.10115 |
| locations[1].id | doi:10.48550/arxiv.2406.10115 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2406.10115 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5113255608 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Mehar Khurana |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Khurana, Mehar |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5006107116 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-9329-3989 |
| authorships[1].author.display_name | Neehar Peri |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Peri, Neehar |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5004353237 |
| authorships[2].author.orcid | https://orcid.org/0009-0008-9180-8983 |
| authorships[2].author.display_name | Deva Ramanan |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Ramanan, Deva |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5016775802 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-7016-4252 |
| authorships[3].author.display_name | James Hays |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Hays, James |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2406.10115 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2024-06-18T00:00:00 |
| display_name | Shelf-Supervised Cross-Modal Pre-Training for 3D Object Detection |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10036 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9337999820709229 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Advanced Neural Network Applications |
| related_works | https://openalex.org/W230091440, https://openalex.org/W2233261550, https://openalex.org/W2810751659, https://openalex.org/W258997015, https://openalex.org/W2997094352, https://openalex.org/W3216976533, https://openalex.org/W100620283, https://openalex.org/W2495260952, https://openalex.org/W4394050964, https://openalex.org/W2551249631 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2406.10115 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2406.10115 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2406.10115 |
| primary_location.id | pmh:oai:arXiv.org:2406.10115 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2406.10115 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2406.10115 |
| publication_date | 2024-06-14 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.+ | 182 |
| abstract_inverted_index.a | 92, 128 |
| abstract_inverted_index.3D | 1, 13, 62, 86, 141, 151 |
| abstract_inverted_index.We | 80, 185 |
| abstract_inverted_index.as | 56 |
| abstract_inverted_index.at | 209 |
| abstract_inverted_index.do | 81 |
| abstract_inverted_index.in | 91, 201 |
| abstract_inverted_index.is | 88, 110, 173, 207 |
| abstract_inverted_index.it | 109 |
| abstract_inverted_index.of | 189 |
| abstract_inverted_index.on | 7, 122, 192 |
| abstract_inverted_index.to | 52, 112 |
| abstract_inverted_index.we | 106, 126, 168 |
| abstract_inverted_index.Our | 205 |
| abstract_inverted_index.RGB | 146 |
| abstract_inverted_index.and | 19, 67, 147, 179, 194 |
| abstract_inverted_index.are | 4, 64 |
| abstract_inverted_index.can | 34 |
| abstract_inverted_index.for | 22, 45, 73, 138, 175 |
| abstract_inverted_index.our | 190 |
| abstract_inverted_index.the | 49, 187 |
| abstract_inverted_index.(RGB | 181 |
| abstract_inverted_index.WOD, | 195 |
| abstract_inverted_index.code | 206 |
| abstract_inverted_index.data | 33, 87, 203 |
| abstract_inverted_index.from | 48, 144 |
| abstract_inverted_index.less | 68 |
| abstract_inverted_index.only | 103 |
| abstract_inverted_index.over | 198 |
| abstract_inverted_index.show | 169 |
| abstract_inverted_index.such | 85, 154 |
| abstract_inverted_index.than | 70, 100, 162 |
| abstract_inverted_index.that | 28, 84, 108, 170 |
| abstract_inverted_index.used | 72 |
| abstract_inverted_index.with | 31, 38, 97, 102, 133, 153 |
| abstract_inverted_index.work | 200 |
| abstract_inverted_index.(e.g. | 131 |
| abstract_inverted_index.(such | 55 |
| abstract_inverted_index.LiDAR | 148 |
| abstract_inverted_index.adapt | 43 |
| abstract_inverted_index.argue | 107 |
| abstract_inverted_index.boxes | 15, 143 |
| abstract_inverted_index.cloud | 115 |
| abstract_inverted_index.data. | 124, 149 |
| abstract_inverted_index.image | 50, 135 |
| abstract_inverted_index.note, | 82 |
| abstract_inverted_index.often | 5, 95 |
| abstract_inverted_index.point | 53, 114 |
| abstract_inverted_index.prior | 163, 199 |
| abstract_inverted_index.their | 78 |
| abstract_inverted_index.those | 71 |
| abstract_inverted_index.using | 117 |
| abstract_inverted_index.works | 26 |
| abstract_inverted_index.LiDAR) | 183 |
| abstract_inverted_index.LiDAR. | 23 |
| abstract_inverted_index.Rather | 99 |
| abstract_inverted_index.better | 111, 158 |
| abstract_inverted_index.clouds | 54 |
| abstract_inverted_index.domain | 51 |
| abstract_inverted_index.models | 120 |
| abstract_inverted_index.object | 2 |
| abstract_inverted_index.paired | 96, 145 |
| abstract_inverted_index.recent | 25 |
| abstract_inverted_index.tasks. | 166 |
| abstract_inverted_index.yields | 156 |
| abstract_inverted_index.diverse | 69 |
| abstract_inverted_index.helpful | 174 |
| abstract_inverted_index.images. | 98 |
| abstract_inverted_index.improve | 35 |
| abstract_inverted_index.labeled | 9 |
| abstract_inverted_index.labels. | 40 |
| abstract_inverted_index.limited | 39, 202 |
| abstract_inverted_index.massive | 8 |
| abstract_inverted_index.methods | 42 |
| abstract_inverted_index.models) | 137 |
| abstract_inverted_index.pretext | 165 |
| abstract_inverted_index.propose | 127 |
| abstract_inverted_index.remains | 16 |
| abstract_inverted_index.smaller | 66 |
| abstract_inverted_index.trained | 6, 121 |
| abstract_inverted_index.However, | 11, 59 |
| abstract_inverted_index.Instead, | 24 |
| abstract_inverted_index.RGB-only | 178 |
| abstract_inverted_index.accuracy | 37, 161 |
| abstract_inverted_index.approach | 130, 191 |
| abstract_inverted_index.bounding | 14, 142 |
| abstract_inverted_index.datasets | 63 |
| abstract_inverted_index.fashion, | 94 |
| abstract_inverted_index.however, | 83 |
| abstract_inverted_index.learning | 47 |
| abstract_inverted_index.limiting | 77 |
| abstract_inverted_index.nuScenes | 193 |
| abstract_inverted_index.publicly | 60 |
| abstract_inverted_index.training | 176 |
| abstract_inverted_index.available | 61, 208 |
| abstract_inverted_index.bootstrap | 113 |
| abstract_inverted_index.collected | 90 |
| abstract_inverted_index.datasets. | 10 |
| abstract_inverted_index.detection | 36, 160 |
| abstract_inverted_index.detectors | 3, 152 |
| abstract_inverted_index.expensive | 18 |
| abstract_inverted_index.improving | 197 |
| abstract_inverted_index.learning, | 76 |
| abstract_inverted_index.naturally | 89 |
| abstract_inverted_index.settings. | 204 |
| abstract_inverted_index.unlabeled | 32 |
| abstract_inverted_index.zero-shot | 140 |
| abstract_inverted_index.annotating | 12 |
| abstract_inverted_index.detectors. | 184 |
| abstract_inverted_index.foundation | 119, 136 |
| abstract_inverted_index.generating | 139 |
| abstract_inverted_index.learning). | 58 |
| abstract_inverted_index.multimodal | 93 |
| abstract_inverted_index.supervised | 132 |
| abstract_inverted_index.LiDAR-only, | 177 |
| abstract_inverted_index.contrastive | 57 |
| abstract_inverted_index.demonstrate | 27, 186 |
| abstract_inverted_index.image-based | 74, 118, 171 |
| abstract_inverted_index.multi-modal | 180 |
| abstract_inverted_index.objectives, | 105 |
| abstract_inverted_index.Contemporary | 41 |
| abstract_inverted_index.Importantly, | 167 |
| abstract_inverted_index.Pre-training | 150 |
| abstract_inverted_index.considerably | 65 |
| abstract_inverted_index.particularly | 21 |
| abstract_inverted_index.pre-training | 30, 101 |
| abstract_inverted_index.Specifically, | 125 |
| abstract_inverted_index.effectiveness | 188 |
| abstract_inverted_index.off-the-shelf | 134 |
| abstract_inverted_index.prohibitively | 17 |
| abstract_inverted_index.pseudo-labels | 155 |
| abstract_inverted_index.significantly | 157, 196 |
| abstract_inverted_index.best-practices | 44 |
| abstract_inverted_index.effectiveness. | 79 |
| abstract_inverted_index.internet-scale | 123 |
| abstract_inverted_index.representations | 116 |
| abstract_inverted_index.self-supervised | 29, 46, 75, 104, 164 |
| abstract_inverted_index.semi-supervised | 159 |
| abstract_inverted_index.time-consuming, | 20 |
| abstract_inverted_index.State-of-the-art | 0 |
| abstract_inverted_index.shelf-supervised | 129 |
| abstract_inverted_index.shelf-supervision | 172 |
| abstract_inverted_index.https://github.com/meharkhurana03/cm3d | 210 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |